Description

"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this: 
  N=a[1]+a[2]+a[3]+...+a[m]; 
  a[i]>0,1<=m<=N; 
My question is how many different equations you can find for a given N. 
For example, assume N is 4, we can find: 
  4 = 4; 
  4 = 3 + 1; 
  4 = 2 + 2; 
  4 = 2 + 1 + 1; 
  4 = 1 + 1 + 1 + 1; 
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!" 

Input

The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file. 

Output

For each test case, you have to output a line contains an integer P which indicate the different equations you have found. 

Sample Input

4
10
20

Sample Output

5
42
627 解析:
母函数入门题,首先母函数
G(x) = (1 + x^1 + x^2..+x^n)(1 + x^2 + x^4 + x^6 + ...)(1 + x^3 + x^6 +..)(..)(1 + x^n)

其中(1 + x^1 + x^2..+x^n)中x的指数为1出现的次数 x^3 ==》 x^(1*3)
其余同理,比如第二个表达式 (1 + x^2 + x^4 + x^6 + ...) x^2 ==> x^(2*1) x^6 ==> x^(2*3)
乘法原理的应用:每一个表达式 表示的都是 某个变量的所有取值
【比如第一个表达式 表示'1'可以取的值(即n拆分后'1'出现的次数)可以为 {0,1,2...n}】
每个变量的所有取值的乘积 就是问题的所有的解(在本问题中表现为‘和’)
例子:4 = 2 + 1 + 1就是 x^(1 * 2)【'1'出现2次】
* x^(2 * 1)【'2'出现1次】
* x^(3 * 0)【'3'出现0次】
* x^(4 * 0)【..】
的结果
所以 G(x)展开后 其中x^n的系数就是 n的拆分解个数

# include <stdio.h>

int main()
{
int C1[], C2[], n; while(scanf("%d", &n) != EOF)
{
for(int i = ; i <= n; i++)//初始化 第一个表达式 目前所有指数项的系数都为1
{
C1[i] = ;
C2[i] = ;
} for(int i = ; i <= n; i++)//第2至第n个表达式
{
for(int j = ; j <= n; j++)//C1为前i-1个表达式累乘后各个指数项的系数
{
for(int k = ; j + k <= n; k += i)//k为第i个表达式每个项的指数 第一项为1【即x^(i * 0)】(指数k=0),第二项为x^(i * 1)(指数为k=i), 第三项为x^(i * 2)... 所以k的步长为i
{
C2[j + k] += C1[j];//(ax^j)*(x^k) = ax^(j+k) -> C2[j+k] += a 【第i个表达式每一项的系数都为1; a为C1[j]的值(x^j的系数); C2为乘上第i个表达式后各指数项的系数】
}
}
for(int j = ; j <= n; j++)//刷新当前累乘结果各指数项的系数
{
C1[j] = C2[j];
C2[j] = ;
}
}
printf("%d\n",C1[n]);
} return ;
}

出处http://acm.hdu.edu.cn/discuss/problem/post/reply.php?postid=21943&messageid=2&deep=1

hdu 1028 Ignatius and the Princess III(母函数入门+模板)的更多相关文章

  1. hdu 1028 Ignatius and the Princess III 母函数

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  2. hdu 1028 Ignatius and the Princess III 简单dp

    题目链接:hdu 1028 Ignatius and the Princess III 题意:对于给定的n,问有多少种组成方式 思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是 ...

  3. HDU 1028 Ignatius and the Princess III 整数的划分问题(打表或者记忆化搜索)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1028 Ignatius and the Princess III Time Limit: 2000/1 ...

  4. HDU 1028 Ignatius and the Princess III (母函数或者dp,找规律,)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. hdu 1028 Ignatius and the Princess III(DP)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. hdu 1028 Ignatius and the Princess III (n的划分)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  7. HDU 1028 Ignatius and the Princess III (生成函数/母函数)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

  8. HDU 1028 Ignatius and the Princess III (递归,dp)

    以下引用部分全都来自:http://blog.csdn.net/ice_crazy/article/details/7478802  Ice—Crazy的专栏 分析: HDU 1028 摘: 本题的意 ...

  9. HDU 1028 Ignatius and the Princess III (动态规划)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

随机推荐

  1. 前端之Photoshop切片

    什么是切片 ?     (Photoshop中的切片) 切片:将图片切成几部分,一片一片往上传,这样上传的速度比较快.每个切片作为一个独立的文件传输,文件中包含切片自己的设置.颜色调板.链接.翻转效果 ...

  2. RedisDesktopManager

    下载地址: https://github.com/uglide/RedisDesktopManager/releases

  3. Spring MVC中页面向后台传值的几种方式

    在学习 Spring Mvc 过程中,有必要来先了解几个关键参数:   @Controller:         在类上注解,则此类将编程一个控制器,在项目启动 Spring 将自动扫描此类,并进行对 ...

  4. 对于行高(line-height)的一些理解

    刚一开始学习这个特性的时候,总是出一些当时看起来很奇怪的问题.现在决定重新整理一下.毕竟使用css,十行揉在一起凑出效果是一种使用,知道为什么会有这种效果也是一种使用.我们需要做一些测试,所以首先需要 ...

  5. CodeForces 670F Restore a Number

    模拟. 首先暴力找到答案的位数,然后就是分类讨论输出答案. #pragma comment(linker, "/STACK:1024000000,1024000000") #inc ...

  6. [Q]将图纸转换为JPG、PNG、plt、DWF、DWFx,XPS等格式文件

    如要将图纸打印为图片,请选择“PublishToWeb JPG.pc3”或“PublishToWeb PNG.pc3”打印机. 如要将图纸打印为plt格式文件,请选择“Windows Default ...

  7. JDBC:四步完成MySQL数据库的连接

    ->首先,将MySQL的jar包引入 ->然后创建一个.properties的文件(例:connection.properties),在该文件中写入如下代码: jdbc.driver.cl ...

  8. centos 安装 ntpdate 并同步时间

    1.安装ntp yum install -y ntp 2.与一个已知的时间服务器同步 # time.nist.gov 是一个时间服务器 ntpdate time.nist.gov 3.删除本地时间并设 ...

  9. python修炼4

    ---恢复内容开始--- 集合 建立  set() ={},集合没有顺序,由不可改变的数字 ,字符串,元组构成 #交集print(a&b) #a.intersection(b) #并集prin ...

  10. IIS优化服务器性能导致QuartZ任务未运行

    问题: IIS 为优化服务器性能,会自动对它认为休眠的应用程序进行资源回收,资源回收将会导致网站应用程序关闭. 解决方案: 1.  设置闲置超时为0,固定回收时间间隔为0,即IIS不主动回收闲置进程 ...