【bzoj3527】 Zjoi2014—力
http://www.lydsy.com/JudgeOnline/problem.php?id=3527 (题目链接)
题意
$${F_i=\sum_{j<i} {\frac{q_iq_j}{(i-j)^2}} - \sum_{j>i} {\frac{q_iq_j}{(i-j)^2}}}$$
给出${q_i}$求${E_i=F_i/q_i}$
Solution
这能一眼秒是卷积w(゚Д゚)w,我怎么完全看不出来,这太强了吧。。
两边同时约掉一个${q_i}$,式子就变的和谐了很多:$${E_i=\sum_{j<i} {\frac{q_j}{(i-j)^2}} - \sum_{j>i} {\frac{q_j}{(i-j)^2}}}$$
然后到这里我就不知道了。。听说要构造两个多项式,然后${E_i}$就可以表示为他们乘积的某一项的系数。。$${A(x)=\sum_{i=0}^{n-1} q_{i+1}*x^i}$$$${B(x)=\sum_{i=0}^{n-2}{-\frac{x^i}{(n-i-1)^2}} + 0*x^{n-1} + \sum_{i=n}^{2n-2} {\frac{x^i}{(n-i+1)^2}}}$$
最后只要输出第${n}$项到第${2n-1}$项的系数就是答案。
一脸懵逼→_→
细节
注意数组大小,注意下标与次数
代码
// bzoj3527
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<complex>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; typedef complex<double> E;
const int maxn=200010;
E a[maxn<<2],b[maxn<<2];
int n,m; namespace FFT {
int rev[maxn<<3],L;
void FFT(E *a,int f) {
for (int i=0;i<m;i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=1;i<m;i<<=1) {
E wn(cos(Pi/i),f*sin(Pi/i));
for (int p=i<<1,j=0;j<m;j+=p) {
E w(1,0);
for (int k=0;k<i;k++,w*=wn) {
E x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y;a[j+k+i]=x-y;
}
}
}
}
void Init() {
int k=n*3-3;
for (m=1;m<=k;m<<=1) L++;
for (int i=0;i<m;i++) rev[i]=(rev[i>>1]>>1) | ((i&1)<<(L-1));
FFT(a,1);FFT(b,1);
for (int i=0;i<m;i++) a[i]*=b[i];
FFT(a,-1);
}
} int main() {
scanf("%d",&n);
double x;
for (int i=1;i<=n;i++) scanf("%lf",&x),a[i-1]=x;
for (int i=0;i<=n-2;i++) b[i]=-1.0/(n-1-i)/(n-1-i);
for (int i=n;i<=2*n-2;i++) b[i]=1.0/(n-1-i)/(n-1-i);
FFT::Init();
for (int i=n-1;i<2*n-1;i++) printf("%.3lf\n",a[i].real()/m);
return 0;
}
【bzoj3527】 Zjoi2014—力的更多相关文章
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- [bzoj3527][Zjoi2014]力_FFT
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...
- bzoj3527: [Zjoi2014]力
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- BZOJ3527[Zjoi2014]力——FFT
题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...
- bzoj3527: [Zjoi2014]力 卷积+FFT
先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...
- 2019.02.28 bzoj3527: [Zjoi2014]力(fft)
传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j ...
- BZOJ3527 [Zjoi2014]力 【fft】
题目 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入格式 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. 输出格式 n行,第i行输出Ei.与标准答案误差不超过 ...
- bzoj千题计划167:bzoj3527: [Zjoi2014]力
http://www.lydsy.com/JudgeOnline/problem.php?id=3527 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 以n=4为例: ...
- [BZOJ3527][ZJOI2014]力 FFT+数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...
- [BZOJ3527][ZJOI2014]力:FFT
分析 整理得下式: \[E_i=\sum_{j<i}{\frac{q_i}{(i-j)^2}}-\sum_{j>i}{\frac{q_i}{(i-j)^2}}\] 假设\(n=5\),考虑 ...
随机推荐
- C++ 学习笔记 变量和基本类型(一)
C++ 学习笔记 一.变量和基本类型概述 类型是所有程序的基础.类型告诉我们数据代表什么意思以及可以对数据执行哪些操作. c++基本类型: 字符型 整型 浮点型 c++ 还提供了可用于自定义数据类型的 ...
- linux后台启动程序脚本实例
启动安装的zookeeper和kafka #!/bin/bash # start zookeeper and kafka service echo "========== Start the ...
- lscpu命令详解
基础命令学习目录首页 一.lscpu输出 使用lscpu查看的结果如下图,这里会显示很多信息,如下: 使用lscpu -p会详细的numa信息,如下: [root@localhost ~]# lscp ...
- Performance — 前端性能监控利器
Performance是一个做前端性能监控离不开的API,最好在页面完全加载完成之后再使用,因为很多值必须在页面完全加载之后才能得到.最简单的办法是在window.onload事件中读取各种数据. 大 ...
- 忘记本地MySQL数据库密码的解决方案。
忘记本地MySQL数据库密码,解决方案,分以下10个步骤: 参考链接: https://blog.csdn.net/weidong_y/article/details ...
- scanf() scanf_s() 区别
写博原因:这几天由于小学期的缘故,接触到了好多C代码,在VS2013中编译的时候,遇到了如下问题: 错误 1 error C4996: 'scanf': This function or variab ...
- C# 打包
开发环境:VS2010+SQL Server 2008 操作系统:win7_32bit 旗舰版 开发语言:C# 项目名称:学生寄宿管理系统 下面开始介绍:如何给windows应用程序打包? 第一步: ...
- Gradle入门(3):构建第一个Java项目
Gradle插件通过引入特定领域的约定和任务来构建你的项目.Java插件是Gradle自身装载的一个插件.Java插件提供的基本功能远比源代码编译和打包多.它为你的项目建立了一个标准的项目布局,并确保 ...
- express框架结合ejs模板引擎使用
我们在项目里建立一个views文件夹(必须),如果你不想使用views文件夹的话需要调用app.set("views","自定义文件夹名"),然后在里面建立一个 ...
- 关于Keil C关键字xdata和data的问题
1.xdata表示这是一个外部RAM地址内的数据,数据最终将被保存至外部RAM的某个地址单元中:但是,外部RAM只能通过寄存器间接寻址来访问,也就是说,其地址需要保存在内部RAM中(其实或许是SFR中 ...