http://www.lydsy.com/JudgeOnline/problem.php?id=3527 (题目链接)

题意

  $${F_i=\sum_{j<i} {\frac{q_iq_j}{(i-j)^2}}   -   \sum_{j>i} {\frac{q_iq_j}{(i-j)^2}}}$$

  给出${q_i}$求${E_i=F_i/q_i}$

Solution

  这能一眼秒是卷积w(゚Д゚)w,我怎么完全看不出来,这太强了吧。。

  两边同时约掉一个${q_i}$,式子就变的和谐了很多:$${E_i=\sum_{j<i} {\frac{q_j}{(i-j)^2}}   -   \sum_{j>i} {\frac{q_j}{(i-j)^2}}}$$

  然后到这里我就不知道了。。听说要构造两个多项式,然后${E_i}$就可以表示为他们乘积的某一项的系数。。$${A(x)=\sum_{i=0}^{n-1} q_{i+1}*x^i}$$$${B(x)=\sum_{i=0}^{n-2}{-\frac{x^i}{(n-i-1)^2}} + 0*x^{n-1} + \sum_{i=n}^{2n-2} {\frac{x^i}{(n-i+1)^2}}}$$

  最后只要输出第${n}$项到第${2n-1}$项的系数就是答案。

  一脸懵逼→_→

细节

  注意数组大小,注意下标与次数

代码

// bzoj3527
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<complex>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; typedef complex<double> E;
const int maxn=200010;
E a[maxn<<2],b[maxn<<2];
int n,m; namespace FFT {
int rev[maxn<<3],L;
void FFT(E *a,int f) {
for (int i=0;i<m;i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=1;i<m;i<<=1) {
E wn(cos(Pi/i),f*sin(Pi/i));
for (int p=i<<1,j=0;j<m;j+=p) {
E w(1,0);
for (int k=0;k<i;k++,w*=wn) {
E x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y;a[j+k+i]=x-y;
}
}
}
}
void Init() {
int k=n*3-3;
for (m=1;m<=k;m<<=1) L++;
for (int i=0;i<m;i++) rev[i]=(rev[i>>1]>>1) | ((i&1)<<(L-1));
FFT(a,1);FFT(b,1);
for (int i=0;i<m;i++) a[i]*=b[i];
FFT(a,-1);
}
} int main() {
scanf("%d",&n);
double x;
for (int i=1;i<=n;i++) scanf("%lf",&x),a[i-1]=x;
for (int i=0;i<=n-2;i++) b[i]=-1.0/(n-1-i)/(n-1-i);
for (int i=n;i<=2*n-2;i++) b[i]=1.0/(n-1-i)/(n-1-i);
FFT::Init();
for (int i=n-1;i<2*n-1;i++) printf("%.3lf\n",a[i].real()/m);
return 0;
}

【bzoj3527】 Zjoi2014—力的更多相关文章

  1. bzoj3527: [Zjoi2014]力 fft

    bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...

  2. [bzoj3527][Zjoi2014]力_FFT

    力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...

  3. bzoj3527: [Zjoi2014]力

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  4. BZOJ3527[Zjoi2014]力——FFT

    题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...

  5. bzoj3527: [Zjoi2014]力 卷积+FFT

    先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...

  6. 2019.02.28 bzoj3527: [Zjoi2014]力(fft)

    传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai​,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j ...

  7. BZOJ3527 [Zjoi2014]力 【fft】

    题目 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入格式 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. 输出格式 n行,第i行输出Ei.与标准答案误差不超过 ...

  8. bzoj千题计划167:bzoj3527: [Zjoi2014]力

    http://www.lydsy.com/JudgeOnline/problem.php?id=3527 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei.      以n=4为例: ...

  9. [BZOJ3527][ZJOI2014]力 FFT+数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...

  10. [BZOJ3527][ZJOI2014]力:FFT

    分析 整理得下式: \[E_i=\sum_{j<i}{\frac{q_i}{(i-j)^2}}-\sum_{j>i}{\frac{q_i}{(i-j)^2}}\] 假设\(n=5\),考虑 ...

随机推荐

  1. 网页从url到网页展示到页面的流程

    心血来潮整理的 https://mubu.com/doc/oLDc49lx39

  2. play-with-vim1~5

    1.移动 h,j,k,l分别对应左下上右 2.模式 vim有四种模式:普通模式,插入模式,可视模式,命令行模式 进入vim 默认为普通模式,光标为方块 输入i 进入插入模式,窗口左下角为insert ...

  3. 01-numpy基础简介

    import numpy as np # ndarray ''' # 三种创建方式 1.从python的基础数据对象转化 2.通过numpy内置的函数生成 3.从硬盘(文件)读取数据 ''' # 创建 ...

  4. Python3中的函数 大全

    Python 函数 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.Python提供了许多内建函数,比如print().但也可以自己创建 ...

  5. 转载---VisualStudioCode通过SSH远程编辑文件

    最近需要长期修改远端服务器上的代码,调试.vim操作又不是很6,想到了远程操作的办法,找到一篇好用的bolg,记录一下. 原文链接:https://blog.csdn.net/qq_38401919/ ...

  6. mybatis批量插入oracle

    <insert id="batchInsert" parameterType="java.util.List"> INSERT INTO TEST( ...

  7. 09慕课网《进击Node.js基础(一)》HTTP-get/request

    get是对request封装 可以在后台发起http请求,获取远程资源,更新或者同步远程资源 http.request(options[,callback]) 以下代码灌水失败: var http = ...

  8. 四则运算2及PSP0设计项目计划

    时间比较紧,我简单写写我的设计思路: 题目在四则运算1的基础上控制产生题目的数量,这个可以用变量控制:打印方式也可选用变量控制,程序的关键是括号的生成.我们可以将整个四则运算式看成()+()的模型,然 ...

  9. hive-2.3.3安装

    1.下载hive-2.3.3 下载地址 http://archive.apache.org/dist/hive/hive-2.3.3 解压,编辑/etc/profile添加HIVE_HOME,保存文件 ...

  10. 2018软工实践—Beta冲刺(2)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Beta 冲鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调组内工作 修改前端界面 展示GitHub当日代码/文档签入记录(组内 ...