【BZOJ4559】成绩比较(动态规划,拉格朗日插值)
【BZOJ4559】成绩比较(动态规划,拉格朗日插值)
题面
题解
显然可以每门课顺次考虑,
设\(f[i][j]\)表示前\(i\)门课程\(zsy\)恰好碾压了\(j\)个\(yyb\)的方案数。
那么,思考转移,显然是原来碾压了\(k\)个人,但是在考虑到这一门课程的时候有些人没被碾压了,
所以转移就是\(f[i][j]=f[i-1][k]*C_k^j*C_{n-k-1}^{n-rank[i]-j}*P[i]\)
大致的含义就是,原先\(zsy\)碾压了\(k\)个人,但是现在\(zsy\)只碾压了\(j\)个蒟蒻\(yyb\),
因为有\(k-j\)个神犇\(ppl\)在这门课程上的得分吊打了\(zsy\)。
先找出来哪些是\(j\)个蒟蒻\(yyb\)中的一员,并且被\(zsy\)被碾压了,方案数是\(C_k^j\),
由于之前有\(k\)个人钦定被\(zsy\)吊打,所以还剩下\(n-k-1\)个人,
然而有\(j\)个蒟蒻\(yyb\)仍然钦定被\(zsy\)吊打,所以剩下的人里面要找些人把被\(zsy\)吊打的人数给填满,要不然\(zsy\)会不开森。
还差多少个被吊打的人呢?一共是\(n-rank[i]\)个被吊打名额,有\(j\)个蒟蒻\(yyb\)被钦定了,所以还剩下\(n-rand[i]-j\)个名额。
所以就得到了上面的转移。。。。吗?
后面那个\(P\)是啥玩意?
你现在不是已经钦定好了这些人的相对排名了吗,然而我们并不知道分数是多少。
所以\(P[i]\)表示的是给所有人钦定\([1,U[i]]\)之间的分数的方案数。
\(U\)这么大,明显不让人活了,所以假装拉格朗日插值一下是对的。
\(P\)是个啥玩意呢?
\(P=\sum_{i=1}^Ui^{n-rank}*(U-i)^{rank-1}\)
什么意思?钦定一下\(zsy\)的分数是\(i\),那么所有被\(zsy\)吊打的人的选择就只有\([1,i]\),
而总共有\(n-rank\)个人被吊打,而剩下的人分数比\(zsy\)高,所以被钦定为\([i+1,U]\),一共\((U-i)\)种方法,总共\(rank-1\)个人,大力插值一波假装是对的就好了。
然而我嫌插值太慢,去网上蒯(抄)了一种神仙做法
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 150
#define MOD 1000000007
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int n,m,K,u[MAX],rk[MAX],f[MAX][MAX],P[MAX],g[MAX];;
int jc[MAX],jv[MAX],inv[MAX];
int C(int n,int m){if(n<0||m<0||m>n)return 0;return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
n=read();m=read();K=read();
for(int i=1;i<=m;++i)u[i]=read();
for(int i=1;i<=m;++i)rk[i]=read();
jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=1;i<=n;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<=n;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=1;i<=m;++i)
{
g[0]=u[i];
for(int j=1;j<=n;++j)
{
g[j]=(fpow(u[i]+1,j+1)-1+MOD)%MOD;
for(int k=0;k<j;++k)add(g[j],MOD-(1ll*C(j+1,k)*g[k]%MOD));
g[j]=1ll*g[j]*fpow(j+1,MOD-2)%MOD;
}
int inv=fpow(u[i],MOD-2),v=fpow(u[i],rk[i]-1),d=1;
for(int j=0;j<rk[i];++j,d=MOD-d,v=1ll*v*inv%MOD)
add(P[i],1ll*C(rk[i]-1,j)*d%MOD*v%MOD*g[n-rk[i]+j]%MOD);
}
f[0][n-1]=1;
for(int i=1;i<=m;++i)
for(int j=K;j<=n;++j)
for(int k=j;k<=n;++k)
add(f[i][j],1ll*f[i-1][k]*C(k,j)%MOD*C(n-k-1,n-rk[i]-j)%MOD*P[i]%MOD);
printf("%d\n",f[m][K]);
return 0;
}
【BZOJ4559】成绩比较(动态规划,拉格朗日插值)的更多相关文章
- 【BZOJ】2655: calc 动态规划+拉格朗日插值
[题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...
- BZOJ4599[JLoi2016&LNoi2016]成绩比较(dp+拉格朗日插值)
这个题我们首先可以dp,f[i][j]表示前i个科目恰好碾压了j个人的方案数,然后进行转移.我们先不考虑每个人的分数,先只关心和B的相对大小关系.我们设R[i]为第i科比B分数少的人数,则有f[i][ ...
- bzoj 4559 [JLoi2016]成绩比较 —— DP+拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-8 ...
- P3270 [JLOI2016]成绩比较(拉格朗日插值)
传送门 挺神仙的啊-- 设\(f[i][j]\)为考虑前\(i\)门课程,有\(j\)个人被\(B\)爷碾压的方案数,那么转移为\[f[i][j]=\sum_{k=j}^{n-1}f[i-1][k]\ ...
- BZOJ4559: [JLoi2016]成绩比较(dp 拉格朗日插值)
题意 题目链接 Sol 想不到想不到.. 首先在不考虑每个人的真是成绩的情况下,设\(f[i][j]\)表示考虑了前\(i\)个人,有\(j\)个人被碾压的方案数 转移方程:\[f[i][j] = \ ...
- bzoj千题计划270:bzoj4559: [JLoi2016]成绩比较(拉格朗日插值)
http://www.lydsy.com/JudgeOnline/problem.php?id=4559 f[i][j] 表示前i门课,有j个人没有被碾压的方案数 g[i] 表示第i门课,满足B神排名 ...
- 【BZOJ2655】Calc(拉格朗日插值,动态规划)
[BZOJ2655]Calc(多项式插值,动态规划) 题面 BZOJ 题解 考虑如何\(dp\) 设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案. \(f[i][j ...
- LG4781 【模板】拉格朗日插值 和 JLOI2016 成绩比较
[模板]拉格朗日插值 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$ ...
- P3270 [JLOI2016]成绩比较 容斥 数论 组合数学 拉格朗日插值
LINK:成绩比较 大体思路不再赘述 这里只说几个我犯错的地方. 拉格朗日插值的时候 明明是n次多项式 我只带了n个值进去 导致一直GG. 拉格朗日插值的时候 由于是从1开始的 所以分母是\((i-1 ...
随机推荐
- golang安装开发环境配置
本机系统:fedora28 step 1 百度搜索 golang 到 go 语言中文网,下载 golang 包,如果是 linux 系统可以直接点击此连接,也可去 go 语言中文网, https:// ...
- RabbitMQ入门:远程过程调用(RPC)
假如我们想要调用远程的一个方法或函数并等待执行结果,也就是我们通常说的远程过程调用(Remote Procedure Call).怎么办? 今天我们就用RabbitMQ来实现一个简单的RPC系统:客户 ...
- jmeter线程组介绍
Jmeter中的测试计划是一直有的,但可以在右侧修改名字,要开始做具体测试设计前,都需要在测试计划下边添加一个线程组,添加路径为鼠标捕获测试计划后,点击鼠标右键->添加->Threads( ...
- 1.21 贪心入门上午PAT例题题解
1.B1023 #include<cstdio> int a[10]; int main() { for(int i=0;i<=9;i++) { scanf("%d&quo ...
- MineCraft | 命令附魔
随时更 来一条命令: /give @p diamond_axe 1 0 {ench:[{id:16,lvl:32767},{id:17,lvl:32767},{id:18,lvl:32767}]} g ...
- 【NLP】使用bert
# 参考 https://blog.csdn.net/luoyexuge/article/details/84939755 小做改动 需要: github上下载bert的代码:https://gith ...
- i++ i+=1 i=i+1 汇编代码效率比较
结论:一样.编译器和编译器之间可能有点区别但是程序不会变. 0x00 一直不清楚到底是因为懒还是真的为了效率,要把" i = i + 1 "写成" i++ "或 ...
- Mysql数据库的隔离级别
Mysql数据库的隔离级别有四种 1.read umcommitted 读未提交(当前事务可以读取其他事务没提交的数据,会读取到脏数据) 2.read committed 读已提交(当前事务不能读 ...
- Tomcat部署与使用
Tomcat简介 Tomcat是Apache软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache.Sun和其他一些公司及个人共同开发 ...
- kerkee demo编译连接过程中遇到的问题及解决方法(iOS)
https://github.com/kercer/kerkee_ios 1.刚打开这个demo的时候是下图这个样子的,我们很自然的可以想到将kerkee.xcoderproj添加到项目里面 2.将k ...