【BZOJ4559】成绩比较(动态规划,拉格朗日插值)

题面

BZOJ

洛谷

题解

显然可以每门课顺次考虑,

设\(f[i][j]\)表示前\(i\)门课程\(zsy\)恰好碾压了\(j\)个\(yyb\)的方案数。

那么,思考转移,显然是原来碾压了\(k\)个人,但是在考虑到这一门课程的时候有些人没被碾压了,

所以转移就是\(f[i][j]=f[i-1][k]*C_k^j*C_{n-k-1}^{n-rank[i]-j}*P[i]\)

大致的含义就是,原先\(zsy\)碾压了\(k\)个人,但是现在\(zsy\)只碾压了\(j\)个蒟蒻\(yyb\),

因为有\(k-j\)个神犇\(ppl\)在这门课程上的得分吊打了\(zsy\)。

先找出来哪些是\(j\)个蒟蒻\(yyb\)中的一员,并且被\(zsy\)被碾压了,方案数是\(C_k^j\),

由于之前有\(k\)个人钦定被\(zsy\)吊打,所以还剩下\(n-k-1\)个人,

然而有\(j\)个蒟蒻\(yyb\)仍然钦定被\(zsy\)吊打,所以剩下的人里面要找些人把被\(zsy\)吊打的人数给填满,要不然\(zsy\)会不开森。

还差多少个被吊打的人呢?一共是\(n-rank[i]\)个被吊打名额,有\(j\)个蒟蒻\(yyb\)被钦定了,所以还剩下\(n-rand[i]-j\)个名额。

所以就得到了上面的转移。。。。吗?

后面那个\(P\)是啥玩意?

你现在不是已经钦定好了这些人的相对排名了吗,然而我们并不知道分数是多少。

所以\(P[i]\)表示的是给所有人钦定\([1,U[i]]\)之间的分数的方案数。

\(U\)这么大,明显不让人活了,所以假装拉格朗日插值一下是对的。

\(P\)是个啥玩意呢?

\(P=\sum_{i=1}^Ui^{n-rank}*(U-i)^{rank-1}\)

什么意思?钦定一下\(zsy\)的分数是\(i\),那么所有被\(zsy\)吊打的人的选择就只有\([1,i]\),

而总共有\(n-rank\)个人被吊打,而剩下的人分数比\(zsy\)高,所以被钦定为\([i+1,U]\),一共\((U-i)\)种方法,总共\(rank-1\)个人,大力插值一波假装是对的就好了。

然而我嫌插值太慢,去网上蒯(抄)了一种神仙做法

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 150
#define MOD 1000000007
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int n,m,K,u[MAX],rk[MAX],f[MAX][MAX],P[MAX],g[MAX];;
int jc[MAX],jv[MAX],inv[MAX];
int C(int n,int m){if(n<0||m<0||m>n)return 0;return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
n=read();m=read();K=read();
for(int i=1;i<=m;++i)u[i]=read();
for(int i=1;i<=m;++i)rk[i]=read();
jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=1;i<=n;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<=n;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=1;i<=m;++i)
{
g[0]=u[i];
for(int j=1;j<=n;++j)
{
g[j]=(fpow(u[i]+1,j+1)-1+MOD)%MOD;
for(int k=0;k<j;++k)add(g[j],MOD-(1ll*C(j+1,k)*g[k]%MOD));
g[j]=1ll*g[j]*fpow(j+1,MOD-2)%MOD;
}
int inv=fpow(u[i],MOD-2),v=fpow(u[i],rk[i]-1),d=1;
for(int j=0;j<rk[i];++j,d=MOD-d,v=1ll*v*inv%MOD)
add(P[i],1ll*C(rk[i]-1,j)*d%MOD*v%MOD*g[n-rk[i]+j]%MOD);
}
f[0][n-1]=1;
for(int i=1;i<=m;++i)
for(int j=K;j<=n;++j)
for(int k=j;k<=n;++k)
add(f[i][j],1ll*f[i-1][k]*C(k,j)%MOD*C(n-k-1,n-rk[i]-j)%MOD*P[i]%MOD);
printf("%d\n",f[m][K]);
return 0;
}

【BZOJ4559】成绩比较(动态规划,拉格朗日插值)的更多相关文章

  1. 【BZOJ】2655: calc 动态规划+拉格朗日插值

    [题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...

  2. BZOJ4599[JLoi2016&LNoi2016]成绩比较(dp+拉格朗日插值)

    这个题我们首先可以dp,f[i][j]表示前i个科目恰好碾压了j个人的方案数,然后进行转移.我们先不考虑每个人的分数,先只关心和B的相对大小关系.我们设R[i]为第i科比B分数少的人数,则有f[i][ ...

  3. bzoj 4559 [JLoi2016]成绩比较 —— DP+拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-8 ...

  4. P3270 [JLOI2016]成绩比较(拉格朗日插值)

    传送门 挺神仙的啊-- 设\(f[i][j]\)为考虑前\(i\)门课程,有\(j\)个人被\(B\)爷碾压的方案数,那么转移为\[f[i][j]=\sum_{k=j}^{n-1}f[i-1][k]\ ...

  5. BZOJ4559: [JLoi2016]成绩比较(dp 拉格朗日插值)

    题意 题目链接 Sol 想不到想不到.. 首先在不考虑每个人的真是成绩的情况下,设\(f[i][j]\)表示考虑了前\(i\)个人,有\(j\)个人被碾压的方案数 转移方程:\[f[i][j] = \ ...

  6. bzoj千题计划270:bzoj4559: [JLoi2016]成绩比较(拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=4559 f[i][j] 表示前i门课,有j个人没有被碾压的方案数 g[i] 表示第i门课,满足B神排名 ...

  7. 【BZOJ2655】Calc(拉格朗日插值,动态规划)

    [BZOJ2655]Calc(多项式插值,动态规划) 题面 BZOJ 题解 考虑如何\(dp\) 设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案. \(f[i][j ...

  8. LG4781 【模板】拉格朗日插值 和 JLOI2016 成绩比较

    [模板]拉格朗日插值 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$ ...

  9. P3270 [JLOI2016]成绩比较 容斥 数论 组合数学 拉格朗日插值

    LINK:成绩比较 大体思路不再赘述 这里只说几个我犯错的地方. 拉格朗日插值的时候 明明是n次多项式 我只带了n个值进去 导致一直GG. 拉格朗日插值的时候 由于是从1开始的 所以分母是\((i-1 ...

随机推荐

  1. 统计学习方法c++实现之八 EM算法与高斯混合模型

    EM算法与高斯混合模型 前言 EM算法是一种用于含有隐变量的概率模型参数的极大似然估计的迭代算法.如果给定的概率模型的变量都是可观测变量,那么给定观测数据后,就可以根据极大似然估计来求出模型的参数,比 ...

  2. 自动分配ip的方法- 【Linux】

    1.  查看本机无线网络使用的网卡 2.  设置vbox的网络连接为桥接,并选择本机无线网络对应的网卡 3.  进入系统,输入ifconfig命令,记录下系统的HWaddr 4.  修改系统ip配置文 ...

  3. Linux 文件系统 -- 文件权限简介

    一.文件权限 使用 ls -l 命令可以查看文件的具体属性: 如图所示,第一列所示告诉了用户一个文件的类型和权限信息: 1)第一个字符 "d",表明该文件是一个目录文件: 2)r ...

  4. 08-matplotlib-颜色与样式

    import numpy as np import matplotlib.pyplot as plt ''' 颜色: - 八种内置默认颜色, 缩写 b :blue g :green r :red c ...

  5. Visionpro介绍和下载安装视频教程

    ------------------------Halcon,Visionpro高清视频教程,点击下载视频--------------------------

  6. Erlang数据类型的表示和实现(3)——列表

    列表 Erlang 中的列表是通过链表实现的,表示列表的 Eterm 就是这个链表的起点.列表 Eterm 中除去 2 位标签 01 之外,剩下的高 62 位表示指向列表中第一个元素的指针的高 62 ...

  7. swapon和swapoff命令详解

    基础命令学习目录首页 原文链接:https://blog.csdn.net/yexiangCSDN/article/details/83182259 swapon命令用于激活Linux系统中交换空间, ...

  8. Nginx中server_name 参数详解

    Nginx中的server_name指令主要用于配置基于名称的虚拟主机,server_name指令在接到请求后的匹配顺序分别为: 1.准确的server_name匹配,例如: server { lis ...

  9. [linux] 查看网卡UUID

    virtualbox复制了虚拟机,重新初始化网卡后,需要对/etc/sysconfig/network-scripts/ifcfg-eth0更新UUID值,虽然不改暂时也没发现有问题. 网上查找需要n ...

  10. 第三次实验报告 敏捷开发与XP实践

    一.  实验内容 (一)敏捷开发与XP 摘要:一项实践在XP环境中成功使用的依据通过XP的法则呈现,包括:快速反馈.假设简单性.递增更改.提倡更改.优质工作.XP软件开发的基石是XP的活动,包括:编码 ...