MT【155】单调有界必有极限
(清华2017.4.29标准学术能力测试20)
已知数列$\{a_n\}$,其中$a_1=a$,$a_2=b$,$a_{n+2}=a_n-\dfrac 7{a_{n+1}}$,则_______
A.$\{a_n\}$可能递增
B.$\{a_n\}$可能递减
C.$\{a_n\}$可能为有限项
D.$\{a_n\}$可能为无限项
答案:A,B, C 和 D,提示: A.B在有限项时是可能对的, C,D可以根据$ab+7$是否$=7k,k\in N$
MT【155】单调有界必有极限的更多相关文章
- MT【159】单调有界有极限
已知数列$\{a_n\}$满足:$a_n>0,a_{n+1}+\dfrac{1}{a_n}<2,n\in N^*$.求证:(1)$a_{n+2}<a_{n+1}<2 (n\in ...
- Matlab求极限
matlab求极限(可用来验证度量函数或者隶属度函数)可用来验证是否收敛,取值范围等等. 一.问题来源 搜集聚类资料时,又看到了隶属度函数,没错,就是下面这个,期间作者提到m趋于2是,结果趋于1,我想 ...
- 机器学习数学|微积分梯度jensen不等式
机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 索引 微积分,梯度和Jensen不等式 Tay ...
- EM算法(Expectation Maximization Algorithm)
EM算法(Expectation Maximization Algorithm) 1. 前言 这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的< ...
- python数学第一天【极限存在定理】
1.基本回忆 2.两边夹定理 推论1. 基本三角函数的极限 2.极限存在定理 单调有界数列必有极限 (1)单调递增有上界数列必有极限 (2)单调递减有下界数列必有极限 推论1: (1+1/n)^n有极 ...
- 【2】从零认识中心极限思想-e往无尽
目录 e往无尽 单调性.有界性 \(e^{-x^2}\)的积分性质 函数列的近似 傅里叶的方案 三角函数系的正交性 傅立叶展开 傅立叶展开式的指数形式 e往无尽 无论是学高数,还是学习数分,我们在讲到 ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- 数学常数e的含义
转载: http://www.ruanyifeng.com/blog/2011/07/mathematical_constant_e.html 作者: 阮一峰 日期: 2011年7月 9日 1. ...
- 证明 O(n/1+n/2+…+n/n)=O(nlogn)
前言 在算法中,经常需要用到一种与调和级数有关的方法求解,在分析该方法的复杂度时,我们会经常得到\(O(\frac{n}{1}+\frac{n}{2}+\ldots+\frac{n}{n})\)的复杂 ...
随机推荐
- ubuntu18.04上的draftsight 2D的安装
1: 先安装draftsight 需要的支持库 sudo apt-get install libuuid1:i386 libice6:i386 libsm6:i386 libxt6:i386 liba ...
- mnist手写数字识别(决策树)
import numpy as np from sklearn.neural_network import MLPClassifier from sklearn.linear_model import ...
- 树莓派操控SG90舵机
目录 舵机接线 PWM介绍 使用PWM控制舵机 这里使用树莓派来操作sg90的舵机.先看一下这个舵机的样子: 这就是传说中的SG90舵机啦,转角是0-180. SG90舵机接线: SG90舵机有三条线 ...
- 新手Python第四天(生成器)
Python 生成器 生成器和生成表达式 a=[i*2 for i in range(10)]#生成表达式 b=(i*2 for i in range(10))#生成器 生成器的特点:优点(不占用内存 ...
- Go入门指南
第一部分:学习 Go 语言 第1章:Go 语言的起源,发展与普及 1.1 起源与发展 1.2 语言的主要特性与发展的环境和影响因素 第2章:安装与运行环境 2.1 平台与架构 2.2 Go 环境变量 ...
- 【RL系列】MDP与DP问题
推荐阅读顺序: Reinforcement Learning: An Introduction (Drfit) 有限马尔可夫决策过程 动态编程笔记 Dynamic programming in Py ...
- web11 Struts处理表单数据
电影网站:www.aikan66.com 项目网站:www.aikan66.com游戏网站:www.aikan66.com图片网站:www.aikan66.com书籍网站:www.aikan66.co ...
- angularJS1笔记-(11)-自定义指令(transclude/priority/terminal)
自定义指令的属性 transclude:为true时,允许把html中新定义的指令中原来的dom运用到该指令的template中. 属性priority,设置该指令的优先级,优先级大的先执行,默认指令 ...
- SQL Server查询已锁的表及解锁
--查询已锁的表 select request_session_id spid,OBJECT_NAME(resource_associated_entity_id) tableName ,* from ...
- jQuery ajax - get() 方法
AJAX = Asynchronous javaScript and XML. AJAX 是一种创建快速动态网页的技术. AJAX 通过在后台与服务器交换少量数据的方式,允许网页进行异步更新.这意味 ...