a≡b(mod n)的含义是“a和b除以n的余数相同”,其充要条件是“a-b是n的整数倍”;

求所有满足条件r^2=x(mod m)的r

题目已经给定了一个初始的r,x,m

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
LL N, mx, r;
set<LL> s;
LL gcd(LL a, LL b, LL &d, LL &x, LL &y)
{
if(!b)
{
d = a;
x = ;
y = ;
}
else
{
gcd(b, a%b, d, y, x);
y -= x*(a/b);
}
} void solve(LL a, LL b)
{
LL x, y, d;
gcd(a, b, d, x, y);
if((*r) % d) return;
x *= *r/d;
x = (x % (b/d) + (b/d)) % (b/d);;
LL r1 = x*a - r;
while(r1 < N)
{
if(r1 >= && (r1*r1) % N == mx)
s.insert(r1);
r1 += a*(b/d);
}
} int main()
{
int kase = ;
while(cin>> mx >> N >> r && mx+N+r)
{
s.clear();
for(LL i=; i<=sqrt(N + 0.5); i++)
{ if(N % i) continue;
LL a = i, b = N/i;
solve(a, b);
solve(b, a);
}
printf("Case %d:",++kase);
for(set<LL>::iterator it=s.begin(); it!=s.end(); it++)
{ printf(" %lld",*it);
}
cout<<endl; } return ;
}

Discrete Square Roots UVALive - 4270(拓展欧几里得)的更多相关文章

  1. UVA 1426 - Discrete Square Roots(数论)

    UVA 1426 - Discrete Square Roots 题目链接 题意:给定X, N. R.要求r2≡x (mod n) (1 <= r < n)的全部解.R为一个已知解 思路: ...

  2. NOIP2012拓展欧几里得

    拉板题,,,不说话 我之前是不是说过数据结构很烦,,,我想收回,,,今天开始的数论还要恶心,一早上听得头都晕了 先来一发欧几里得拓展裸 #include <cstdio> void gcd ...

  3. poj 1061 青蛙的约会 拓展欧几里得模板

    // poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...

  4. bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得

    这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...

  5. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  6. POJ1061 青蛙的约会-拓展欧几里得

    Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...

  7. BZOJ-2242 计算器 快速幂+拓展欧几里得+BSGS(数论三合一)

    污污污污 2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2312 Solved: 917 [Submit][S ...

  8. BZOJ-1407 Savage 枚举+拓展欧几里得(+中国剩余定理??)

    zky学长实力ACM赛制测试,和 大新闻(YveH) 和 华莱士(hjxcpg) 组队...2h 10T,开始 分工我搞A,大新闻B,华莱士C,于是开搞: 然而第一题巨鬼畜,想了40min发现似乎不可 ...

  9. poj2891 拓展欧几里得

    //Accepted 164 KB 16 ms //拓展欧几里得 //m=a1*x+b1 --(1) //m=a2*(-y)+b2 --(2) //->a1*x+a2*y=b2-b1 //由欧几 ...

随机推荐

  1. Kali Linux菜单中各工具功能大全

    各工具kali官方简介(竖排):https://tools.kali.org/tools-listing 名称 类型 使用模式 功能 功能评价 dmitry 信息收集   whois查询/子域名收集/ ...

  2. Python输出格式全总结

    输入输出 有几种方法可以显示程序的输出:数据可以以人类可读的形式打印出来,或者写入文件以供将来使用.本章将讨论一些可能性. 更漂亮的输出格式 到目前为止,我们遇到了两种写入值的方法:表达式语句 和 p ...

  3. 在vsphere6.5启用Tesla K80

    基础环境: vsphere6.5 VMware vCenter6.5 宝德服务器2750S Tesla K80 0x01 选择主机,配置→硬件→PCI设备→添加K80显卡 注意:1.添加完显卡后,主机 ...

  4. 【Kubernetes】基于角色的权限控制:RBAC

    Kubernetes中所有的API对象,都保存在Etcd里,对这些API对象的操作,一定都是通过访问kube-apiserver实现的,原因是需要APIServer来做授权工作. 在Kubernete ...

  5. Hyperledger Fabric服务器配置及修改Docker容器卷宗存储根目录/位置

    Hyperledger Fabric节点服务器对存储空间的消耗还是比较大的,在我实际生产体验的过程中,每一条请求数据大概仅2K左右,但实际占用空间远不止这点,每个节点都会对Block及链进行保存维护, ...

  6. PHP处理表单数据的一个安全回顾(记录教训)

    曾经看过一个安全文章中写过这么一条 表单输入数据要做 htmlspecialchars_decode 表单输出数据要做htmlspecialchars 当时还不是很理解为什么,自己也没遇到问题,所以就 ...

  7. Django_cookie+session

    一.cookie和session介绍 cookie 由服务器产生内容,浏览器收到请求后保存在本地:当浏览器再次访问时,浏览器会自动带上cookie,这样服务器就能通过cookie的内容来判断这个是“谁 ...

  8. url的param与dict转换

    urllib.parse.urlencode urlencode from urllib import parse from urllib.request import urlopen from ur ...

  9. C++ 类 析构函数

    一.析构函数的定义 析构函数为成员函数的一种,名字与类名相同,在前面加‘~’没有参数和返回值在C++中“~”是位取反运算符.一个类最多只能有一个析构函数.析构函数不返回任何值,没有函数类型,也没有函数 ...

  10. “Hello World!“”团队第七周召开的第二次会议

    今天是我们团队“Hello World!”团队第七周召开的第二次会议.博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.代码 一 ...