SparkSql实现Mysql到hive的数据流动
今天去面试了一波,因为调度系统采用了SparkSql实现数据从Mysql到hive,在这一点上面试官很明显很不满我对于Spark的理解,19年的第一个面试就这么挂了。
有问题不怕,怕的是知道了问题还得过且过。现在就来梳理下我的项目是怎么使用Spark导数的
第一步:把mysql中的表放入内存
properties.put("user", dbUser);
properties.put("password", dbPassword);
properties.put("driver", dbDriver);
Dataset<Row> bizdateDS = sparkSession.read().jdbc(
dbUrl,
dbTableName,
properties
);
其中:org.apache.spark.sql.Dataset(这里面试官问我怎么把mysql的数据转化到Spark,我没答上来)
第二步:创建数据库与表
2.1 创建库
String createDBSQL = "CREATE DATABASE IF NOT EXISTS " + hiveDBName + " LOCATION '" + dbPath + "'";
sparkSession.sql(createDBSQL);
```
2.2创建表
分成两步,第一步读取Mysql元数据字段,第二步把这些字段创建出来
2.2.1 读取mysql字段
StructType structType = bizdateDS.schema();
StructField[] structFields = structType.fields();
/*
structField是StructType中的字段。
param:name此字段的名称。
param:dataType此字段的数据类型。
param:nullable指示此字段的值是否为空值。
param:metadata此字段的元数据。 如果未修改列的内容(例如,在选择中),则应在转换期间保留元数据。
*/
2.2.2 创建字段
String sourceType; //Name of the type used in JSON serialization.
String columnName;
String targetType;
StructField structField;
SparkDataTypeEnum sparkDataType;
StringBuilder createBuilder = new StringBuilder(capacity);
createBuilder.append("CREATE TABLE IF NOT EXISTS ").append(realHiveTableName).append(" (");
List<String> dbTableColumns = Lists.newArrayList();
Map<String, String> dbTableColumnTypeMap = Maps.newHashMap();
//把Mysql中的每个字段都提取出来
for (int i = 0, len = structFields.length; i < len; i++) {
structField = structFields[i];
sourceType = structField.dataType().typeName();
columnName = structField.name();
if (sourceType.contains("(")) { //处理类似varchar(20)
sourceType = sourceType.substring(0, sourceType.indexOf("("));
}
sparkDataType = SparkDataTypeEnum.getItemByType(sourceType);
if (null != sparkDataType) {
targetType = sparkDataType.getHiveDataType().getType();
//时间戳字段强转成string字段
if(targetType.equals("timestamps")) targetType.equals("string");
} else {
targetType = HiveDataTypeEnum.STRING.getType();
}
dbTableColumns.add(columnName);
dbTableColumnTypeMap.put(columnName, targetType);
if (i != 0) {
createBuilder.append(",");
}
createBuilder.append(columnName).append(" ").append(targetType);
}
createBuilder.append(") PARTITIONED by (").append(partitionColumn)
.append(" STRING) ");
sparkSession.sql(createTableSQL);
2.3 对比字段
我们在2.2中,如果hive有字段了,那么就不会创建表。
问题在于,如果hive中的字段比mysql中的少怎么办?
2.3.1 获取hive中的表字段
HiveUtil connectionToHive = new HiveUtil("org.apache.hive.jdbc.HiveDriver", hiveUrl, hiveUser, hivePassword);
public List<String> getTableColumns(String dbName,String tableName) throws SQLException {
ResultSet rs = null;
try {
if (!this.validateTableExist(tableName)) {
return null;
}
DatabaseMetaData metaData = connection.getMetaData();
rs = metaData.getColumns(null, dbName, tableName.toUpperCase(), "%");
List<String> columns = new ArrayList();
while (rs.next()) {
columns.add(rs.getString("COLUMN_NAME").toLowerCase());
}
return columns;
} catch (SQLException e) {
throw e;
} finally {
if (null != rs) {
rs.close();
}
}
}
2.3.2 对比字段并且添加:
for (String dbTableColumn : dbTableColumns) {
if (StringUtil.hasCapital(dbTableColumn)) {
DingDingAlert.sendMsg(dbTableName + "的" + dbTableColumn + "是大写字段,替换成小写");
logger.warn(dbTableName + "的" + dbTableColumn + "是大写的,把他替换成小写");
sb.append("\n " + GetTime.getTimeStamp("yyyy-MM-dd HH:mm:ss") + "| WARN |" + "表" + hiveTableName + "在hive中不存在,程序关闭");
dbTableColumn = StringUtil.convertStringToLowerCase(dbTableColumn, false);
}
if (!hiveTableColumns.contains(dbTableColumn)) {
alterColumns.add(dbTableColumn);
}
}
2.4 将内存中的表存入hive
bizdateDS.createOrReplaceTempView(tmpTableName); //注意这里不是直接从mysql抽到hive,而是先从Mysql抽到内存中
insert hive_table select hive中的已经有的表的字段 from tmpTableName
##很明显的,如果不是需要和hive已经有的表交互根本用不到jdbc
SparkSql实现Mysql到hive的数据流动的更多相关文章
- 从MySQL到Hive,数据迁移就这么简单
使用Sqoop能够极大简化MySQL数据迁移至Hive之流程,并降低Hadoop处理分析任务时的难度. 先决条件:安装并运行有Sqoop与Hive的Hadoop环境.为了加快处理速度,我们还将使用Cl ...
- 使用Sqoop从mysql向hdfs或者hive导入数据时出现的一些错误
1.原表没有设置主键,出现错误提示: ERROR tool.ImportTool: Error during import: No primary key could be found for tab ...
- Spark操作MySQL,Hive并写入MySQL数据库
最近一个项目,需要操作近70亿数据进行统计分析.如果存入MySQL,很难读取如此大的数据,即使使用搜索引擎,也是非常慢.经过调研决定借助我们公司大数据平台结合Spark技术完成这么大数据量的统计分析. ...
- 从hive将数据导出到mysql(转)
从hive将数据导出到mysql http://abloz.com 2012.7.20 author:周海汉 在上一篇文章<用sqoop进行mysql和hdfs系统间的数据互导>中,提到s ...
- sqoop用法之mysql与hive数据导入导出
目录 一. Sqoop介绍 二. Mysql 数据导入到 Hive 三. Hive数据导入到Mysql 四. mysql数据增量导入hive 1. 基于递增列Append导入 1). 创建hive表 ...
- Hive[4] 数据定义 HiveQL
HiveQL 是 Hive 查询语言,它不完全遵守任一种 ANSI SQL 标准的修订版,但它与 MySQL 最接近,但还有显著的差异,Hive 不支持行级插入,更新和删除的操作,也不支持事务,但 H ...
- hadoop笔记之Hive的数据存储(视图)
Hive的数据存储(视图) Hive的数据存储(视图) 视图(view) 视图是一种虚表,是一个逻辑概念:可以跨越多张表 既然视图是一种虚表,那么也就是说用操作表的方式也可以操作视图 但是视图是建立在 ...
- Sqoop使用,mysql,hbase,hive等相互转换
Sqoop 是一款用来在不同数据存储软件之间进行数据传输的开源软件,它支持多种类型的数据储存软件. 安装 Sqoop 1.下载sqoop并加mysql驱动包 http://mirror.bit.edu ...
- 使用sqoop将MySQL数据库中的数据导入Hbase
使用sqoop将MySQL数据库中的数据导入Hbase 前提:安装好 sqoop.hbase. 下载jbdc驱动:mysql-connector-java-5.1.10.jar 将 mysql-con ...
随机推荐
- java面试④数据库部分
2.3.1 数据库的分类及常用的数据库 数据库分为:关系型数据库和非关系型数据库 关系数据库:mysql,oracle,sqlServer 非关系型:redis,mongoDB 2.3.2 简单介绍一 ...
- ADB故障时的一些命令
开发中经常用到adb重启等操作,简单记录一下. 1.重启 adb kill-server adb start-server 2.显示版本号 adb version 3.显示已连接的设备 adb dev ...
- Java指定保留小数位数的方法
package com.qiyuan.util; import java.math.BigDecimal; import java.math.RoundingMode; import java.tex ...
- lucene源码分析(8)MergeScheduler
1.使用IndexWriter.java mergeScheduler.merge(this, MergeTrigger.EXPLICIT, newMergesFound); 2.定义MergeSch ...
- 【LeetCode题解】206_反转链表(Reverse-Linked-List)
目录 描述 解法一:迭代 思路 Java 实现 Python 实现 复杂度分析 解法二:递归 思路 Java 实现 Python 实现 复杂度分析 更多 LeetCode 题解笔记可以访问我的 git ...
- SpringMVC源码阅读:异常解析器
1.前言 SpringMVC是目前J2EE平台的主流Web框架,不熟悉的园友可以看SpringMVC源码阅读入门,它交代了SpringMVC的基础知识和源码阅读的技巧 本文将通过源码(基于Spring ...
- CentOS7.2配置Hadoop2.6.5
Hadoop配置文件 /etc/profile 配置Java和Hadoop环境 export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk export CLAS ...
- mysql 用存储过程和函数分别模拟序列
在其他大部分DBMS里都有序列的概念,即Sequence或Generator. 而mysql里没有,但有时真的很有用.下面分别用存储过程和函数来模拟序列,并用程序模拟并发场景来测试原子性和完整性,是否 ...
- 记录:springmvc + mybatis + maven 搭建配置流程
前言:不会配置 spring mvc,不知道为什么那样配置,也不知道从何下手,那么看这里就对了. 在 IDEA 中搭建 maven + springmvc + mybatis: 一.在 IDEA 中首 ...
- ASP.NET MVC扩展库
很多同学都读过这篇文章吧 ASP.NET MVC中你必须知道的13个扩展点,今天给大家介绍一个ASP.NET MVC的扩展库,主要就是针对这些扩展点进行.这个项目的核心是IOC容器,包括Ninject ...