一开始写了7个DP方程,然后意识到这种DP应该都会有一个通式。

三个条件:有色行数为n,有色列数为m,颜色数p,三维容斥原理仍然成立。

于是就是求:$\sum_{i=0}^{n}\sum_{j=0}^{m}\sum_{k=0}^{p}(-1)^{n+m+p-i-j-k}\times C_n^i\times C_m^j\times C_p^k\times (k+1)^{ij}$

复杂度$O(n^3)$

可以根据二项式定理优化:

https://blog.csdn.net/werkeytom_ftd/article/details/52527740

复杂度$O(n^2\log)$

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,mod=1e9+;
int n,m,p,ans,fac[N],inv[N]; int ksm(int a,int b){
int res=;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} int C(int n,int m){ return 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod; } int main(){
freopen("bzoj4487.in","r",stdin);
freopen("bzoj4487.out","w",stdout);
scanf("%d%d%d",&n,&m,&p);
fac[]=; rep(i,,) fac[i]=1ll*fac[i-]*i%mod;
inv[]=ksm(fac[],mod-);
for (int i=; ~i; i--) inv[i]=1ll*inv[i+]*(i+)%mod;
rep(i,,n) rep(k,,p){
int t=1ll*C(n,i)*C(p,k)%mod*ksm((-ksm(k+,i)+mod)%mod,m)%mod;
if ((n+m+p-i-k)&) ans=(ans-t+mod)%mod; else ans=(ans+t)%mod;
}
printf("%d\n",ans);
return ;
}

[BZOJ4487][JSOI2015]染色问题(容斥)的更多相关文章

  1. bzoj4487[Jsoi2015]染色问题 容斥+组合

    4487: [Jsoi2015]染色问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 211  Solved: 127[Submit][Status ...

  2. BZOJ4487 [Jsoi2015]染色问题

    BZOJ4487 [Jsoi2015]染色问题 题目描述 传送门 题目分析 发现三个限制,大力容斥推出式子是\(\sum_{i=0}^{N}\sum_{j=0}^{M}\sum_{k=0}^{C}(- ...

  3. 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)

    [题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...

  4. [bzoj4487][Jsoi2015]染色_容斥原理

    染色 bzoj-4487 Jsoi-2015 题目大意:给你一个n*m的方格图,在格子上染色.有c中颜色可以选择,也可以选择不染.求满足条件的方案数,使得:每一行每一列都至少有一个格子被染色,且所有的 ...

  5. 2019.02.09 bzoj4487: [Jsoi2015]染色问题(容斥原理)

    传送门 题意简述: 用ccc中颜色给一个n∗mn*mn∗m的方格染色,每个格子可涂可不涂,问最后每行每列都涂过色且ccc中颜色都出现过的方案数. 思路: 令fi,j,kf_{i,j,k}fi,j,k​ ...

  6. [acmm week12]染色(容斥定理+组合数+逆元)

    1003 染色         Time Limit: 1sec    Memory Limit:256MB Description 今天离散数学课学了有关树的知识,god_v是个喜欢画画的人,所以他 ...

  7. BZOJ4487 JSOI2015染色问题(组合数学+容斥原理)

    逐个去除限制.第四个限制显然可以容斥,即染恰好c种颜色的方案数=染至多c种颜色的方案数-染至多c-1种颜色的方案数+染至多c-2种颜色的方案数…… 然后是限制二.同样可以容斥,即恰好选n行的方案数=至 ...

  8. P4491 [HAOI2018]染色 广义容斥 NTT 生成函数

    LINK:染色 算是比较常规的广义容斥. 算恰好k个 可以直接转成至少k个. 至少k个非常的好求 直接生成函数. 设\(g_k\)表示至少有k个颜色是满足的 那么有 \(g_k=C(m,k)\frac ...

  9. HAOI 2018 染色(容斥+NTT)

    题意 https://loj.ac/problem/2527 思路 设 \(f(k)\) 为强制选择 \(k\) 个颜色出现 \(s\) 种,其余任取的方案数. 则有 \[ f(k)={m\choos ...

随机推荐

  1. 2016.5.14——leetcode-HappyNumber,House Robber

    leetcode:HappyNumber,House Robber 1.Happy Number 这个题中收获2点: 1.拿到题以后考虑特殊情况,代码中考虑1和4,或者说<6的情况,动手算下.( ...

  2. torch.nn.CrossEntropyLoss

    class torch.nn.CrossEntropyLoss(weight=None, size_average=True, ignore_index=-100, reduce=True) 我这里没 ...

  3. 最详细的block底层

    主要讲述的要点: block 干什么用的 block 语法 block 底层实现 block 变量捕捉 block 的种类.在存储空间中的存储位置 block 循环引用 __block 在ARC 中 ...

  4. window.print打印方法实现

    vue中使用window.print打印效果 项目要求 打印每页有10行表格,如果接口数据没有十个显示10行 效果图 第一页 第二页 子组件 <template> <div> ...

  5. Eclipse中各种编码格式及设置

    操作系统:Windows 10(家庭中文版) Eclipse版本:Version: Oxygen.1a Release (4.7.1a) 刚看到一篇文章,里面介绍说Ascii.Unicode是编码,而 ...

  6. 洛谷P3396哈希冲突

    传送门啦 非常神奇的分块大法. 这个题一看数据范围,觉得不小,但是如果我们以 $ \sqrt(x) $ 为界限,数据范围就降到了 $ x < 400 $ 我们设数组 $ f[i][j] $ 表示 ...

  7. 让你的 JMeter 像 LoadRunner 那样实时查看每秒事务数(TPS)、事务响应时间(TRT)

    熟悉 LoadRunner 的朋友一定不会对其 TPS(每秒事务数).TRT(事务响应时间) 等视图感到陌生,因为这是压力测试最为关键的两个指标.JMeter 以其开源.轻巧.灵活.扩展性高等特性赢得 ...

  8. (转载)使用SQL-Server创建一个银行数据管理系统Ⅰ

    首先,要创建一个完整的数据管理系统,不是一蹴而就的,一定要要一步一步的来,不断完善,最终方能达到自己想要的结果,所以我在这里也是一点一点分步来做的. 创建数据库,数据库属性在这里用的是默认(不推荐使用 ...

  9. NOIP2018初赛 解题报告(C++普及)

    第24届全国青少年信息学奥林匹克联赛初赛 普及组C++语言试题 竞赛时间:2018 年 10 月 13 日 14:30~16:30 选手注意: 1.试题纸共有 7 页,答题纸共有 2 页,满分 100 ...

  10. **后台怎么处理JSON数据中含有双引号?

    http://bbs.csdn.net/topics/390578406?page=1 注意是后台,不是用js另外我这个json是直接取得别人的传过来的字符串,不是我自己拼写的,所以我自己不能做到转义 ...