3495: PA2010 Riddle
3495: PA2010 Riddle
分析:
每个点要么建首都,要么不建,并且一个点建了,会导致一些点不能建。所以可以考虑2-sat。
但是如果在每个郡里两两连边,边数是n^2的。
考虑用前缀优化。
S[i]表示对于当前郡,前i个点中是否存在一个首都,A[i]表示i这个点是否建首都。
1、那么有A[i]=1,则S[i]=1,同样有它的逆否命题:S[i]=0,则A[i]=0。
2、根据前缀的性质有S[i-1]=1,则S[i]=1,逆否命题:S[i]=0,则S[i-1]=0。
3、由于每个郡只能有一个首都,所以A[i]=1,则S[i-1]=0,逆否命题:S[i-1]=1,则A[i]=0。
4、还有满足每条边两边至少一个首都,u=0,则v=1,逆否命题:v=0,则u=1
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ;
struct Edge{ int to, nxt; } e[N << ];
int head[N], dfn[N], low[N], bel[N], sk[N], top, Index, tot, En;
bool vis[N]; inline void add_edge(int u,int v) {
++En; e[En].to = v, e[En].nxt = head[u]; head[u] = En;
}
void tarjan(int u) {
low[u] = dfn[u] = ++Index;
sk[++top] = u; vis[u] = ;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
}
if (vis[v]) low[u] = min(low[u], dfn[v]);
}
if (low[u] == dfn[u]) {
++tot;
do {
vis[sk[top]] = ;
bel[sk[top]] = tot;
top --;
} while (sk[top + ] != u);
}
}
int main() {
int n = read(), m = read(), k = read();
for (int u, v, i = ; i <= m; ++i) {
u = read(), v = read();
add_edge(u + n, v);add_edge(v + n, u);
}
for (int i = ; i <= n; ++i) // A[i]=1,S[i]=1
add_edge(i, i + * n), add_edge(i + * n, i + n);
for (int cnt, now, last, i = ; i <= k; ++i) {
cnt = read(), last = read();
for (int j = ; j <= cnt; ++j) {
now = read();
add_edge(last + * n, now + * n);add_edge(now + * n, last + * n); // S[i-1]=1,S[i]=1
add_edge(now, last + * n); add_edge(last + * n, now + n); // A[i]=1,S[i-1]=0
last = now;
}
}
for (int i = ; i <= (n << ); ++i) if (!dfn[i]) tarjan(i);
for (int i = ; i <= n; ++i) {
if (bel[i] == bel[i + n] || bel[i + * n] == bel[i + * n]) {
puts("NIE"); return ;
}
}
puts("TAK");
return ;
}
3495: PA2010 Riddle的更多相关文章
- 3495: PA2010 Riddle 2-sat 前缀优化
3495: PA2010 Riddle 2-sat 前缀优化 链接 bzoj 思路 不想说啥了,看hwim的吧,我去睡觉了zZ. 代码 /******************************* ...
- 【BZOJ】3495: PA2010 Riddle
题意 \(n(1 \le n \le 1000000)\)个城市,\(k(1 \le k \le n)\)个国家,\(m(1 \le m \le 1000000)\)条边.要求每个国家有且仅有一个首都 ...
- BZOJ.3495.[PA2010]Riddle(2-SAT 前缀优化建图)
题目链接 每个城市要么建首都要么不建,考虑2-SAT 这样一个国家内城市两两连边是很显然的,但是边数为O(n^2) 每个国家中仅有一个建首都,考虑新建前缀S[i]=1/0这2n个点表示当前国家的[1, ...
- 【刷题】BZOJ 3495 PA2010 Riddle
Description 有n个城镇被分成了k个郡,有m条连接城镇的无向边. 要求给每个郡选择一个城镇作为首都,满足每条边至少有一个端点是首都. Input 第一行有三个整数,城镇数n(1<=n& ...
- 【BZOJ】3495: PA2010 Riddle 2-SAT算法
[题意]有n个城镇被分成了k个郡,有m条连接城镇的无向边.要求给每个郡选择一个城镇作为首都,满足每条边至少有一个端点是首都.n,m,k<=10^6. [算法]2-SAT,前后缀优化建图 [题解] ...
- 【bzoj 3495】PA2010 Riddle
Description 有n个城镇被分成了k个郡,有m条连接城镇的无向边.要求给每个郡选择一个城镇作为首都,满足每条边至少有一个端点是首都. Input 第一行有三个整数,城镇数n(1<=n&l ...
- BZOJ3495 : PA2010 Riddle
2-SAT. 建立n个变量,其中第i个变量表示第i个城市是否是首都. 对于边(x,y),连边x->y',y->x'. 对于一个有y个城市的国家,新建2y个变量,分别表示前i个城市和后i个城 ...
- BZOJ3495 PA2010 Riddle 【2-sat】
题目链接 BZOJ3495 题解 每个城市都有选和不选两种情况,很容易考虑到2-sat 边的限制就很好设置了,主要是每个郡只有一个首都的限制 我们不可能两两之间连边,这样复杂度就爆炸了 于是乎就有了一 ...
- 【BZOJ3495】PA2010 Riddle
题目大意 有\(n\)个城镇被分成了\(k\)个郡,有\(m\)条连接城镇的无向边.要求给每个郡选择一个城镇作为首都,满足每条边至少有一个端点是首都. 题目分析 每条边至少有一个端点是首都,每个郡至多 ...
随机推荐
- ASP.NET MVC实现通用设置
网站中的设置实现方式有好几种,其中有将设置类序列化然后保存到文件中(例如使用XML序列化然后以XML形式保存在文件中),或者将设置信息保存到数据库中. 保存到数据库中的方式就是将设置的项作为key,设 ...
- MySQL字符存储:charset-unicode-sets
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-sets.html 10.10.1 Unicode Character Sets MyS ...
- Error:Could not find com.android.tools.build:gradle:3.0.0
Error:Could not find com.android.tools.build:gradle:3.0.Searched in the following locations: file ...
- [UI] 精美UI界面欣赏[6]
精美UI界面欣赏[6]
- 获取系统屏幕尺寸参数的类WxHxD
获取系统屏幕尺寸参数的类WxHxD 源码: // // WxHxD.h // PM2.5 // // Created by YouXianMing on 14/10/29. // Copyright ...
- 解决windows10下无法安装.net framework 3.5,错误代码0x800F081F
1.下载 NET Framework 3.5的安装包netfx3.cab: http://download.windowsupdate.com/d/msdownload/update/software ...
- CSS3 新增颜色表示方式
一.CSS1&2颜色表示方式(W3C标准) 1.Color name 颜色名称方式(用颜色关键字表示对应的颜色.) 例如:red(红色).blue(蓝色).pink(粉色) 优点:方便快捷而 ...
- 1088. [SCOI2005]扫雷Mine【网格DP】
Description 相信大家都玩过扫雷的游戏.那是在一个n*m的矩阵里面有一些雷,要你根据一些信息找出雷来.万圣节到了 ,“余”人国流行起了一种简单的扫雷游戏,这个游戏规则和扫雷一样,如果某个格子 ...
- Odoo图片如何显示
转载请注明原文地址:https://www.cnblogs.com/cnodoo/p/9281423.html odoo没有专门的图片标签,但是可以通过widget来控制field标签来显示图片内容. ...
- Python文件和流
#coding = utf-8 from pprint import pprint import fileinput #read(n) f = open(r'E:\test_dir\somefile. ...