题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4916

第一个询问即求出$\sum_{i=1}^{n} { \mu (i^2)} $,考虑到$\mu$的定义,当i>1时必存在次数为偶数的质因子,故在数据范围内,$\sum_{i=1}^{n} { \mu (i^2)} $恒等于1。

第二个询问即求出$\sum_{i=1}^{n} { \varphi  (i^2)} $,考虑到$\varphi$的定义,则有$\varphi(i^2)=i\times \varphi(i)$。

问题转化为求$\sum_{i=1}^{n} { i\times \varphi  (i)} $

下面开始化简式子,考虑式子$n=\sum_{i|n}{\varphi (i)}$

通过简单变式,得:$n=\sum_{i|n\&i<n}{\varphi (i)}+\varphi (n)$

移项,得:$\varphi (n)=n-\sum_{i|n\&i<n}{\varphi (i)}$

通过之前推出的式子,得:$\mu(n^2)=n^2-n\times\sum_{i|n\&i<n}{\mu(i)}$

我们设$\Phi(n)=\sum_{i=1}^{n} { \varphi  (i^2)}$

则:

$\Phi(n)=\sum_{i=1}^{n} (i^2-i \times \sum_{j|i\&j<i}\varphi(j))$

$=\frac{n(n+1)(2n+1)}{6}-\sum_{i=1}^{n} i \times \sum_{j|i\&j<i}\varphi(j)$

$=\frac{n(n+1)(2n+1)}{6}-\sum_{i=2}^{n} i \times \sum_{j=1}^{\left \lfloor \frac{n}{i} \right \rfloor}\varphi(j)\times j$

$=\frac{n(n+1)(2n+1)}{6}-\sum_{i=2}^{n} i \times \Phi(\left \lfloor \frac{n}{i} \right \rfloor)$

然后用杜教筛的思路+预处理1~19260817的$i\times \mu (i)$的前缀和即可

 #include<bits/stdc++.h>
#define L long long
#define M 19260817
#define MOD 1000000007
#define inv6 166666668
using namespace std; int b[M]={},phi[M]={},use=; L pri[M]={};
void init(){
phi[]=;
for(int i=;i<M;i++){
if(!b[i]) pri[++use]=i,phi[i]=i-;
for(int j=;j<=use&&i*pri[j]<M;j++){
b[i*pri[j]]=;
if(i%pri[j]==) {phi[i*pri[j]]=phi[i]*pri[j]; break;}
phi[i*pri[j]]=phi[i]*(pri[j]-);
}
}
for(L i=;i<M;i++) phi[i]=(phi[i-]+phi[i]*i)%MOD;
} map<int,L> mp;
L solve(L n){
if(n<M) return phi[n];
if(mp[n]) return mp[n];
L pls=n*(n+)%MOD*(n<<|)%MOD*inv6%MOD,ans=;
for(L i=,j;i<=n;i=j+){
j=n/(n/i);
L sumi=((i+j)*(j-i+)/)%MOD;
ans=(ans+solve(n/i)%MOD*sumi)%MOD;
}
ans=(pls-ans+MOD)%MOD;
return mp[n]=ans;
} int main(){
init();
int n; scanf("%d",&n); printf("1\n");
printf("%lld\n",solve(n));
}

【BZOJ4916】神犇和蒟蒻 杜教筛的更多相关文章

  1. BZOJ4916: 神犇和蒟蒻(杜教筛)

    题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...

  2. [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛

    题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...

  3. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  4. BZOJ4916: 神犇和蒟蒻【杜教筛】

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  5. BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】

    题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...

  6. BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)

    第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...

  7. Bzoj4916: 神犇和蒟蒻

    题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...

  8. 【BZOJ4916】神犇和蒟蒻(杜教筛)

    [BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...

  9. 【BZOJ4916】神犇和蒟蒻 解题报告

    [BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...

随机推荐

  1. 2018.08.19 洛谷P1402 酒店之王(最大流)

    传送门 最大流入门题,把人拆点即可. 代码: #include<bits/stdc++.h> #define N 505 using namespace std; inline int r ...

  2. 40 Older People Needed Less Sleep ?老年人要睡得少 ?

    Older People Needed Less Sleep ?老年人要睡得少 ? ①The popular notion that older people need less sleep than ...

  3. yersinia的DHCP池耗尽断网攻击

    http://jingyan.baidu.com/article/0eb457e5045bd703f1a9051d.html yersinia -G

  4. swagger 入门

    官网:http://swagger.io/ Swagger UI 下载地址: https://github.com/swagger-api/swagger-ui 文档:README.md ### Do ...

  5. null 解决方法

    在iOS开发过程中经常需要与服务器进行数据通讯,Json就是一种常用的高效简洁的数据格式. 问题现象 但是几个项目下来一直遇到一个坑爹的问题,程序在获取某些数据之后莫名崩溃.其实很早就发现了原因:由于 ...

  6. shell 脚本,将/etc/目录下所有的软链接文件输出

    #!/bin/bash # cd /etc for a in *;do if [ -L $a ];then #如果文件存在,为软链接文件且指向的是文件,则返回真 echo $a fi done 测试:

  7. 团队作业第四周(HCL盐酸队)——项目冲刺(第一篇)

    任务认领情况: 1.坦克类实现:李密,卢泰佑 2.子弹类,线程类实现:黄国航 赖少勇 3.画笔类,地图的实现:陈舒标  黄宇航 明日任务安排: 今天在通过已经购买的GUI书籍的帮助下,已经实现了界面的 ...

  8. mod_pagespeed

    https://github.com/pagespeed/mod_pagespeed.git https://developers.google.com/speed/pagespeed/module/ ...

  9. Eclipse ADT 与VS 常用的快捷键 对比学习

    注:以下说的类型于VS,是指:VS+Resharper的快捷键,我是采用了Resharper作为VS的快捷键. 导航 Ctrl+1 快速修复 (类似于VS的alt+enter) Ctrl+D: 删除当 ...

  10. MVC-1.1 BundleConfig-ScriptBundle

    App_Start中的BudleCnfig.cs中 bundles.Add(new ScriptBundle("~/bundles/jquery").Include( " ...