Description

题库链接

给你一个 \(n\) 连环,游戏规则是:

  1. 第一个(最右边)环任何时候都可以任意装上或卸下;
  2. 如果第 \(k\) 个环没有被卸下,且第 \(k\) 个环右边的所有环都被卸下,则第 \(k+1\) 个环(第 \(k\) 个环左边相邻的环)可以任意装上或卸下。

现在 \(m\) 组询问,每组询问给你 \(n\) 连环,问你至少多少步取下所有的环。

\(1\leq n\leq 10^5,1\leq m\leq 10\)

Solution

数学书上推导很清楚了:

值得注意的是第二张图片中的 \(n\) 为奇数的推导式中 \(\frac{2(1-2^{n+1})}{1-2^2}\) 应该是 \(\frac{1-2^{n+1}}{1-2^2}\)

有幸能指出数学书的错误。

然后 \(\text{FFT}\) 快速幂乱搞就好了。不开 \(-O2\) 玩 \(\text{FFT}\) 不就是在玩火吗???

Code

这个瓜皮代码常数过大在 b 站上过不了。

#include <bits/stdc++.h>
#define dob complex<double>
using namespace std;
const int N = (100000<<2)+5;
const double pi = acos(-1.); int n, nn, m, len, L, R[N], A[N];
dob a[N], b[N]; void FFT(dob *A, int o) {
for (int i = 0; i < len; i++) if (i < R[i]) swap(A[i], A[R[i]]);
for (int i = 1; i < len; i <<= 1) {
dob wn(cos(pi/i), sin(pi*o/i)), x, y;
for (int j = 0; j < len; j += (i<<1)) {
dob w(1, 0);
for (int k = 0; k < i; k++, w = w*wn) {
x = A[j+k], y = w*A[i+j+k];
A[j+k] = x+y, A[i+j+k] = x-y;
}
}
}
}
void work() {
scanf("%d", &n); nn = n; ++n; m = log(2)*n+5;
for (L = 0, len = 1; len <= m; len <<= 1) ++L;
for (int i = 0; i < len; i++) a[i] = b[i] = 0;
for (int i = 0; i < len; i++) R[i] = (R[i>>1]>>1)|((i&1)<<(L-1));
a[0] = 1, b[0] = 2;
while (n) {
FFT(a, 1), FFT(b, 1);
if (n&1) for (int i = 0; i <= len; i++) a[i] = a[i]*b[i];
for (int i = 0; i <= len; i++) b[i] = b[i]*b[i]; n >>= 1;
FFT(a, -1); FFT(b, -1);
for (int i = 0; i < len; i++) A[i] = a[i].real()/len+0.5;
int loc = 0; while (A[loc] && loc < len) A[loc+1] += A[loc]/10, A[loc] %= 10, ++loc;
for (int i = 0; i < len; i++) a[i] = A[i];
for (int i = 0; i < len; i++) A[i] = b[i].real()/len+0.5;
loc = 0; while (A[loc] && loc < len) A[loc+1] += A[loc]/10, A[loc] %= 10, ++loc;
for (int i = 0; i < len; i++) b[i] = A[i];
}
for (int i = 0; i < len; i++) A[i] = a[i].real();
A[0] -= 1+(!(nn&1));
for (int i = len-1, flag = 0, sum = 0; i >= 0; i--) {
sum = sum*10+A[i]; if (sum/3) flag = 1;
if (flag) printf("%d", sum/3), sum %= 3;
}
puts("");
}
int main() {int t; cin >> t; while (t--) work(); return 0; }

[CQOI 2018]九连环的更多相关文章

  1. 「杂录」CQOI 2018 背板记

    背景 经过一天天的等待,终于迎来了\(CQOI2018\),想想\(NOIp\)过后到现在,已经有了快要半年了,曾经遥遥无期,没想到时间一转眼就过去了-- 日志 \(Day0\) 因为明天就要考试了, ...

  2. [CQOI 2018]异或序列&[Codeforces 617E]XOR and Favorite Number

    Description 题库链接1 题库链接2 已知一个长度为 \(n\) 的整数数列 \(a_1,a_2,\cdots,a_n\) ,给定查询参数 \(l,r\) ,问在 \([l,r]\) 区间内 ...

  3. [CQOI 2018]解锁屏幕

    Description 题库链接 给出平面上 \(n\) 个点,一开始你可以选任何一个点作为起点,接着对于每一个你在的位置,你可以选取一个未走过的点.将路径(线段)上所有的点均选上(包括起点终点),并 ...

  4. [CQOI 2018]破解D-H协议

    Description 题库链接 给出 \(A,B,P,g\) ,\(g\) 是 \(P\) 的原根,求出 \(A\equiv g^a\pmod{P}\) , \(B\equiv g^b\pmod{P ...

  5. [CQOI 2018]交错序列

    Description 题库链接 定义长度为 \(n\) 的"交错序列"为:长度为 \(n\) 序列中仅含 \(0,1\) 且没有相邻的 \(1\) .给出 \(a,b\) ,假设 ...

  6. [CQOI 2018]社交网络

    Description 题库链接 求 \(n\) 个点以 \(1\) 为根的有向生成树个数. \(1\leq n\leq 250\) Solution 我终于会 \(\texttt{Matrix-Tr ...

  7. [ CQOI 2018 ] 异或序列

    \(\\\) Description 给出一个长为 \(n\) 的数列 \(A\) 和 \(k\),多次询问: 对于一个区间 \([L_i,R_i]\),问区间内有多少个不为空的子段异或和为 \(k\ ...

  8. # BZOJ5300 [CQOI2018]九连环 题解 | 高精度 FFT

    今天做了传说中的CQOI六道板子题--有了一种自己很巨的错觉(雾 题面 求n连环的最少步数,n <= 1e5. 题解 首先--我不会玩九连环-- 通过找规律(其实是百度搜索)可知,\(n\)连环 ...

  9. 2018. The Debut Album

    http://acm.timus.ru/problem.aspx?space=1&num=2018 真心爱过,怎么能彻底忘掉 题目大意: 长度为n的串,由1和2组成,连续的1不能超过a个,连续 ...

随机推荐

  1. C# 创建、部署和调用WebService简单示例

    webservice 可以用于分布式应用程序之间的交互,和不同程序之间的交互. 概念性的东西就不说太多,下面开始创建一个简单的webservice的例子.这里我用的是Visual Studio 201 ...

  2. ASP.NET Core使用EF Core操作MySql数据库

    ASP.NET Core操作MySql数据库, 这样整套环境都可以布署在Linux上 使用微软的 Microsoft.EntityFrameworkCore(2.1.4) 和MySql出的 MySql ...

  3. c#常用的预处理器指令

    预处理器指令指导编译器在实际编译开始之前对信息进行预处理.所有的预处理器指令都是以 # 开始. #define 预处理器指令创建符号常量.#define 允许您定义一个符号,这样,通过使用符号作为传递 ...

  4. C# GDI绘制仪表盘(纯代码实现)

    纯代码实现GDI绘制仪表盘,效果在代码下面. public partial class HalfDashboardUc : UserControl { /// <summary> /// ...

  5. 登录状态保持Session/Cookie

    登录成功: 1.Session保存User对象. 2.Cookie保存唯一值UserID(或者usercode)和加密Sign(生成规则自己定义,MD5用户名,用户ID,私有串等),并设置过期时间. ...

  6. jzoj5913

    這道題我們可以套路的設置f[i]為當前節點為根的滿足條件方案數,然後枚舉根,計算必須包含當前根的方案 但是似乎很難計算 所以我們可以搞一個前綴和,將聯通塊的最大數和最小數相減<=k的方案和< ...

  7. 队列的实现——java

    同样实现方法有两种: 1. 数组的实现,可以存储任意类型的数据(略): 2. Java的 Collection集合 中自带的"队列"(LinkedList)的示例: import ...

  8. (1)Oracle基础--用户与登录

    一.用户 · 系统用户 <1> sys,system  sys和system是权限比较高的用户,且sys比system权限高.使用sys登录必须使用sysdba或者sysoper的权限,而 ...

  9. Storm-kafka源码分析之Config相关类

    要创建一个KafkaSpout对象,必须要传入一个SpoutConfig对象,KafkaSpout的构造函数定义如下: public KafkaSpout(SpoutConfig spoutConf) ...

  10. 编写一致的符合习惯的javascript

    本文转自我司的编码规范~ ==== 引言 将要叙述的这些原则旨对javascript开发的风格做指导,并非指定性的规则需绝对服从.如果需要找出一条必须遵循的原则,应该是保持代码的一致性和风格统一. 除 ...