参考 https://wenku.baidu.com/view/fee9e9b9bceb19e8b8f6ba7a.html?from=search### 的最后一道例题

首先无向完全图是个若干点的置换,但是实际上要染色边,也就是要求边的置换

首先,通过dfs构造一个点的置换,然后再把每个置换分割加起来就是答案(实际上分割方案很少)

那么现在有一个点置换的长度(a1,a2,a3...),考虑边置换,一条边(pi,pj),如果pi,pj在不同的置换里,那么显然循环节是lcm(ai,aj),所以循环个数就是gcd(ao,aj);

对于pi,pj在同一个置换里,如果a是奇数,那么只有循环节长度为2的循环个数就是(a-1)/2,如果是偶数,除了长度为2的循环节还有长度为a/2的,所以个数是a/2

然后一个拆分的方案数是https://blog.csdn.net/litble/article/details/79116659















#include<iostream>
#include<cstdio>
using namespace std;
const int N=60;
int n,m;
long long fac[N],mod,ans,a[N];
long long gcd(long long a,long long b)
{
return !b?a:gcd(b,a%b);
}
long long ksm(long long a,long long b)
{
long long r=1;
while(b)
{
if(b&1)
r=r*a%mod;
a=a*a%mod;
b>>=1;
}
return r;
}
void dfs(int w,int s,int y)
{
if(!y)
{
int c=0,tot=1;
long long nw=1;
for(int i=1;i<w;i++)
c+=a[i]/2;
for(int i=1;i<w;i++)
for(int j=i+1;j<w;j++)
c+=gcd(a[i],a[j]);
for(int i=1;i<w;i++)
nw=nw*a[i]%mod;
for(int i=2;i<w;i++)
{
if(a[i]!=a[i-1])
nw=nw*fac[tot]%mod,tot=0;
tot++;
}
nw=fac[n]*ksm(nw*fac[tot]%mod,mod-2)%mod;
ans=(ans+nw*ksm(m,c))%mod;
}
if(y<s)
return;
for(int i=s;i<=y;i++)
{
a[w]=i;
dfs(w+1,i,y-i);
}
}
int main()
{
scanf("%d%d%lld",&n,&m,&mod);
fac[0]=1;
for(int i=1;i<=n;i++)
fac[i]=fac[i-1]*i%mod;
dfs(1,1,n);
printf("%lld\n",ans*ksm(fac[n],mod-2)%mod);
return 0;
}

bzoj 1478: Sgu282 Isomorphism && 1815: [Shoi2006]color 有色图【dfs+polya定理】的更多相关文章

  1. BZOJ 1815: [Shoi2006]color 有色图(Polya定理)

    题意 如果一张无向完全图(完全图就是任意两个不同的顶点之间有且仅有一条边相连)的每条边都被染成了一种颜色,我们就称这种图为有色图. 如果两张有色图有相同数量的顶点,而且经过某种顶点编号的重排,能够使得 ...

  2. bzoj 1815: [Shoi2006]color 有色图 置换群

    1815: [Shoi2006]color 有色图 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 136  Solved: 50[Submit][Stat ...

  3. BZOJ 1815: [Shoi2006]color 有色图 [Polya DFS 重复合并]

    传送门 题意: 染色图是无向完全图,且每条边可被染成k种颜色中的一种.两个染色图是同构的,当且仅当可以改变一个图的顶点的编号,使得两个染色图完全相同.问N个顶点,k种颜色,本质不同的染色图个数(模质数 ...

  4. 【BZOJ 1478】 1478: Sgu282 Isomorphism (置换、burnside引理)

    1478: Sgu282 Isomorphism Description 给 定一个N 个结点的无向完全图( 任意两个结点之间有一条边), 现在你可以用 M 种颜色对这个图的每条边进行染色,每条边必须 ...

  5. BZOJ1815: [Shoi2006]color 有色图

    BZOJ1815: [Shoi2006]color 有色图 Description Input 输入三个整数N,M,P 1< = N <= 53 1< = M < = 1000 ...

  6. [SHOI2006]color 有色图[群论、组合计数]

    题意 用 \(m\) 种颜色,给 \(n\) 个点的无向完全图的 \(\frac{n(n-1)}{2}\) 条边染色,两种方案相同当且仅当一种方案交换一些点的编号后可以变成另一种方案.问有多少本质不同 ...

  7. BZOJ1815 SHOI2006有色图(Polya定理)

    置换数量是阶乘级别的,但容易发现本质不同的点的置换数量仅仅是n的整数拆分个数,OEIS(或者写个dp或者暴力)一下会发现不是很大,当n=53时约在3e5左右. 于是暴力枚举点的置换,并且发现根据点的置 ...

  8. [BZOJ1815&BZOJ1488]有色图/图的同构(Polya定理)

    由于有很多本质相同的重复置换,我们先枚举各种长度的点循环分别有多少个,这个暴搜的复杂度不大,n=53时也只有3e5左右.对于每种搜索方案可以轻易求出它所代表的置换具体有多少个. 但我们搜索的是点置换组 ...

  9. [BZOJ1478&1488&1815][SGU282]Isomorphism:Polya定理

    分析 三倍经验题,本文以[BZOJ1478][SGU282]Isomorphism为例展开叙述,主体思路与另外两题大(wan)致(quan)相(yi)同(zhi). 这可能是博主目前写过最长也是最认真 ...

随机推荐

  1. Leetcode41: Remove Duplicates from Sorted List

    Given a sorted linked list, delete all duplicates such that each element appear only once. For examp ...

  2. Codeforces Round #148 (Div. 1)

    A wool sequence 表示一个序列中能够找到一个连续的子区间使得区间异或值为0 那么求的是不含这样的情况的序列个数 题目中数据范围是.在0~2^m - 1中选n个数作为一个序列 n和m都是1 ...

  3. FastDFS的配置、部署与API使用解读(4)FastDFS配置详解之Client配置(转)

    一种方式是通过调用ClientGlobal类的初始化方法对配置文件进行加载,另一种是通过调用API逐一设置配置参数.后一种方式对于使用Zookeeper等加载属性的方式很方便. 1. 加载配置文件: ...

  4. [转载]JSONP跨域的原理解析

    JavaScript是一种在Web开发中经常使用的前端动态脚本技术.在JavaScript中,有一个很重要的安全性限制,被称为“Same-Origin Policy”(同源策略).这一策略对于Java ...

  5. 统计nginx日志单IP访问请求数排名

    下面是我截取一段nginx日志 /Jan/::: +] "-" "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:31.0) Gec ...

  6. 诊断并解决 ORA-4030 错误 (Doc ID 1548826.1)

    适用于: Oracle Database - Enterprise Edition - 版本号 8.1.7.4 和更高版本号 本文档所含信息适用于全部平台 用途 怎样诊断 ORA-4030 错误 排错 ...

  7. Educational Codeforces Round 9 E. Thief in a Shop NTT

    E. Thief in a Shop   A thief made his way to a shop. As usual he has his lucky knapsack with him. Th ...

  8. ECMAScript学习笔记

    1. ECMAScript不存在块级作用域,因此在循环内部定义的变量,在循环外也是可以访问的 eg: var count =10; fpr(var i=0; i<count; i++){ ale ...

  9. gitlab merge过程

    基本步骤如下: 以我的分支为例 1.创建本地分支,命令 git checkout -b liuping_develop2.创建好分支后提交到远程 ,命令 git push origin liuping ...

  10. CentOS 6.5 通过 PHP函数的sendmail 发送邮件

    非常多站点须要用到Sendmail函数发送激活邮件,在centos中内置了Sendmail模块,直接调用就可以,假设遇到问题,可採用例如以下两个步骤检測并解决: 1. 命令行输入:echo " ...