Cake(凸包+区间DP)
You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of each cut is a line segment, whose two endpoints are two vertices of the polygon. Within the polygon, any two cuts ought to be disjoint. Of course, the situation that only the endpoints of two segments intersect is allowed.
The cake's considered as a coordinate system. You have known the coordinates of vexteces. Each cut has a cost related to the coordinate of the vertex, whose formula is costi, j = |xi + xj| * |yi + yj| % p. You want to calculate the minimum cost.
NOTICE: input assures that NO three adjacent vertices on the polygon-shaped cake are in a line. And the cake is not always a convex.
Input
There're multiple cases. There's a blank line between two cases. The first line of each case contains two integers, N and p (3 ≤ N, p ≤ 300), indicating the number of vertices. Each line of the following N lines contains two integers, x and y(-10000 ≤ x, y ≤ 10000), indicating the coordinate of a vertex. You have known that no two vertices are in the same coordinate.
Output
If the cake is not convex polygon-shaped, output "I can't cut.". Otherwise, output the minimum cost.
Sample Input
3 3
0 0
1 1
0 2
Sample Output
0
题目大意:
给定若干个点,若围成的不是凸包,则输出"I can't cut.",反之,把该图形分割成若干个三角,每条分割线不相交,每次分割需要花费
|xi+xj|*|yi+yj|%p,求最小花费.
#include <bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
int dp[][],sum[][];
struct point
{
int x,y;
}p[];
int cross(point a,point b,point c)///叉积
{
return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);
}
bool cmp(point a,point b)///极角排序
{
if(cross(p[],a,b)>) return ;
return ;
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
int pos=;
for(int i=;i<n;i++)
{
scanf("%d%d",&p[i].x,&p[i].y);
if(p[pos].y>p[i].y||p[pos].y==p[i].y&&p[pos].x>p[i].x)///找最左下的点
pos=i;
}
int flag=;
swap(p[pos],p[]);
sort(p+,p+n,cmp);
int cnt=;
for(int i=;i<n;i++)
if(cross(p[i-],p[i-],p[i])<)
{flag=;break;}
if(!flag) printf("I can't cut.\n");
else
{
memset(sum,,sizeof sum);
for(int i=;i<n;i++)///预处理cost
for(int j=i+;j<n;j++)
{
if(i==&&j==n-) continue;
sum[i][j]=sum[j][i]=(abs(p[i].x+p[j].x)*abs(p[i].y+p[j].y))%m;
}
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
dp[i][j]=INF;
dp[i][(i+)%n]=;
}
for(int i=n-;i>=;i--)
for(int j=i+;j<n;j++)
for(int k=i+;k<j;k++)
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+sum[i][k]+sum[k][j]);
printf("%d\n",dp[][n-]);
}
}
return ;
}
Cake(凸包+区间DP)的更多相关文章
- ZOJ - 3537 Cake (凸包+区间DP+最优三角剖分)
Description You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut t ...
- ZOJ 3537 Cake(凸包+区间DP)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形 ...
- ZOJ 3537 Cake 求凸包 区间DP
题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...
- HDU 6603 Azshara's deep sea(凸包+区间DP)
由于题目要求,首先维护出一个凸包,然后在凸包上寻找点对关系,用rel[i][j]表示i点和j点之间是否可以连线,又由于维护出来的凸包上的点的个数不多,可以直接枚举点对并枚举所有圆,判断两点直线和圆是否 ...
- ZOJ 3537 Cake (区间DP,三角形剖分)
题意: 给出平面直角坐标系上的n个点的坐标,表示一个多边形蛋糕,先判断是否是凸多边形,若否,输出"I can't cut.".若是,则对这个蛋糕进行3角形剖分,切n-3次变成n-2 ...
- ZOJ 3537 (凸包 + 区间DP)(UNFINISHED)
#include "Head.cpp" const int N = 10007; int n, m; struct Point{ int x,y; bool operator &l ...
- [hdu contest 2019-07-29] Azshara's deep sea 计算几何 动态规划 区间dp 凸包 graham扫描法
今天hdu的比赛的第一题,凸包+区间dp. 给出n个点m个圆,n<400,m<100,要求找出凸包然后给凸包上的点连线,连线的两个点不能(在凸包上)相邻,连线不能与圆相交或相切,连线不能相 ...
- 区间DP小结
也写了好几天的区间DP了,这里稍微总结一下(感觉还是不怎么会啊!). 但是多多少少也有了点感悟: 一.在有了一点思路之后,一定要先确定好dp数组的含义,不要模糊不清地就去写状态转移方程. 二.还么想好 ...
- ZOJ 3537 Cake(凸包判定+区间DP)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped c ...
随机推荐
- 7.1 Java集合概述
List 有序.重复的集合 Set 无序.不可重复的集合 Map 具有映射关系的集合 jdk1.5之后.Java增加了Queue体系集合,代表一种队列集合实现
- iOS7改变状态栏文字颜色
1在Info.plist中设置UIViewControllerBasedStatusBarAppearance 为NO2 在需要改变状态栏颜色的 AppDelegate中在 didFinishLaun ...
- 138 Copy List with Random Pointer 复制带随机指针的链表
给出一个链表,每个节点包含一个额外增加的随机指针,该指针可以指向链表中的任何节点或空节点.返回一个深拷贝的链表. 详见:https://leetcode.com/problems/copy-list- ...
- python_11(网络编程)
第1章 ucp协议 1.1 特性 1.2 缺陷 1.3 UDP协议实时通信 第2章 socket的更多方法 2.1 面向锁的套接字方法 2.1.1 blocking设置非阻塞 2.1.2 Blocki ...
- CentOS 7.2安装pip
CentOS 7.2默认安装的python版本为python2.7.5,我的系统里面默认是没有安装pip 的,搜了下网上各路大侠的解决办法,如下: 使用yum安装python-pip,但是报错,说没有 ...
- CF749C Voting
题目链接: http://codeforces.com/problemset/problem/749/C 题目大意: 共有n个人,编号为1~n.他们每个人属于且仅属于R阵营或N阵营中的一个.现在他们要 ...
- VS Code使用技巧整理
转自:https://blog.csdn.net/u011127019/article/details/58586129 https://blog.csdn.net/sgdd123/article/d ...
- 不需要用任何辅助工具打包Qt应用程序
不需要用任何辅助工具打包Qt应用程序.方法如下: 生成release文件后,双击里面的exe文件,会弹出一个对话框,里面提示缺少哪一个DLL文件, 然后根据该文件名到你安装QT软件的目录下的/b ...
- 洛谷 P2866 [USACO06NOV]糟糕的一天Bad Hair Day
题目描述 Some of Farmer John's N cows (1 ≤ N ≤ 80,000) are having a bad hair day! Since each cow is self ...
- Hibernate Lazy属性与懒加载 整理
lazy概念:要用到的时候,再去加载,对于关联的集合来说,只有当访问到的时候,才去加载它所关联的集合,比如一个user对应很多权限,只有当user.getRights()的时候,才发出select r ...