题目描述

小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆。通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号。为了在门口展出更多种花,规定第i种花不能超过ai盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。

试编程计算,一共有多少种不同的摆花方案。

输入输出格式

输入格式:

第一行包含两个正整数n和m,中间用一个空格隔开。

第二行有n个整数,每两个整数之间用一个空格隔开,依次表示a1、a2、……an。

输出格式:

输出只有一行,一个整数,表示有多少种方案。注意:因为方案数可能很多,请输出方案数对1000007取模的结果。

输入输出样例

输入样例#1:

2 4
3 2
输出样例#1:

2

说明

【数据范围】

对于20%数据,有0<n≤8,0<m≤8,0≤ai≤8;

对于50%数据,有0<n≤20,0<m≤20,0≤ai≤20;

对于100%数据,有0<n≤100,0<m≤100,0≤ai≤100。

NOIP 2012 普及组 第三题

分析:一道非常简单的dp,设f[i][j]表示前i排一共放了j盆花的方案数,那么显然f[i][j] = sum{f[i-1][k]} (min(j - a[i],0) <= k < j),和背包问题非常像.特殊情况是每一排可以不用放花.

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath> using namespace std; int n,m,a[],f[][]; const int mod = ; int main()
{
scanf("%d%d",&n,&m);
for (int i = ; i <= n; i++)
scanf("%d",&a[i]);
f[][] = ;
for (int i = ; i <= n; i++)
for (int j = ; j <= m; j++)
for (int k = ; k <= min(a[i],j); k++)
f[i][j] = (f[i][j] + f[i-][j - k]) % mod;
printf("%d\n",f[n][m] % mod); return ;
}

洛谷P1077 摆花的更多相关文章

  1. 洛谷P1077 摆花(背包dp)

    P1077 摆花 题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆.通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号.为了在门口展出更多种花,规定第i种花不能 ...

  2. 洛谷 P1077 摆花

    题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆.通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号.为了在门口展出更多种花,规定第i种花不能超过ai盆,摆花时 ...

  3. 洛谷—— P1077 摆花

    https://www.luogu.org/problem/show?pid=1077 题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆.通过调查顾客的喜好,小明列出了顾客 ...

  4. 洛谷P1077 摆花——题解

    题目传送 题目大意:有按顺序放的n种花,相同种类的花放一起,每种花最多放ai盆,共放了m盆花,求放花方案数. 求方案个数一般有以下思路:1.搜索:2.递推/动态规划:3.贪心:4.分治... 玄学估计 ...

  5. 洛谷 P1077 摆花 (背包DP)

    题意:有\(n\)种花,每种花有\(a_i\)盆,现在要摆\(m\)盆花,花的种类从\([1,n]\)有序排放,问有多少种方案数. 题解:这题可以借用01背包的思路,感觉更好想一点,我们首先枚举\(n ...

  6. 【洛谷p1077】摆花

    题外废话: 真的超级喜欢这道题 摆花[题目链接] yy一提醒,我发现这道题和[洛谷p2089] 烤鸡有异曲同工之妙(数据更大了更容易TLE呢qwq) SOLUTION1:(暴搜) 搜索:关于搜索就不用 ...

  7. 洛谷P1077 [NOIP2012普及组]摆花 [2017年四月计划 动态规划14]

    P1077 摆花 题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆.通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号.为了在门口展出更多种花,规定第i种花不能 ...

  8. 题解:洛谷P1357 花园

    题解:洛谷P1357 花园 Description 小 L 有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为 \(1∼n\).花园 \(1\) 和 \(n\) 是相邻的. 他的环形花园每天都会换 ...

  9. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

随机推荐

  1. poj2377 Bad Cowtractors

    思路: 最大生成树. 实现: #include <iostream> #include <cstdio> #include <vector> #include &l ...

  2. 关于setTimeout和Promise执行顺序问题

    先看一段代码 console.log('打印'+1); setTimeout(function(){ console.log('打印'+2); }) new Promise(function(reso ...

  3. 如何在win7、win8、win8.1上安装使用vb6.0

    https://jingyan.baidu.com/article/915fc414fdf8fb51384b2062.html如何在win7.win8.win8.1上安装使用vb6.0 如何在win7 ...

  4. Android学习笔记(十九) OkHttp

    一.概述 根据我的理解,OkHttp是为了方便访问网络或者获取服务器的资源,而封装出来的一个工具包.通常的使用步骤是:首先初始化一个OkHttpClient对象,然后使用builder模式构造一个Re ...

  5. SAP成都研究院安德鲁:自己动手开发一个Chrome Extension

    各位好,我叫何金鑫(He Andrew), 团队同事亲切地称呼在下为安德鲁.如果你在附近找到wifi热点名为 「安德鲁森面包房5g」,可能是我就在附近,我们可以去喝杯咖啡,聊聊最近有趣的东西. 鄙人现 ...

  6. SQLite -创建数据库

    SQLite -创建数据库 SQLite sqlite3命令用于创建新的SQLite数据库.你不需要有任何特权来创建一个数据库. 语法: sqlite3命令的基本语法如下: $sqlite3 Data ...

  7. Android(java)学习笔记166:上下文的区分

    1.两种上下文:  (1)Activity.this                               界面的上下文 (2)getApplicationContext()         整 ...

  8. dnsquery - 使用解析程序查询域名服务器

    SYNOPSIS(总览) dnsquery [-n nameserver ] [-t type ] [-c class ] [-r retry ] [-p period ] [-d ] [-s ] [ ...

  9. aapt环境变量配置

    D:\android-sdk_r24.4.1-windows\android-sdk-windows\build-tools\28.0.2 将aapt路径添加到path中, 打开cmd 输入aapt

  10. nodeJS和npm的环境配置

    1.windows下的NodeJS安装是比较方便的(v0.6.0版本之后,支持windows native),只需要登陆官网(http://nodejs.org/),便可以看到首页的“INSTALL” ...