1018. Binary Apple Tree

Time limit: 1.0 second
Memory limit: 64 MB
Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a binary tree, i.e. any biparous branch splits up to exactly two new branches. We will enumerate by integers the root of binary apple tree, points of branching and the ends of twigs. This way we may distinguish different branches by their ending points. We will assume that root of tree always is numbered by 1 and all numbers used for enumerating are numbered in range from 1 to N, where N is the total number of all enumerated points. For instance in the picture below N is equal to 5. Here is an example of an enumerated tree with four branches:
2   5
\ /
3 4
\ /
1
As you may know it's not convenient to pick an apples from a tree when there are too much of branches. That's why some of them should be removed from a tree. But you are interested in removing branches in the way of minimal loss of apples. So your are given amounts of apples on a branches and amount of branches that should be preserved. Your task is to determine how many apples can remain on a tree after removing of excessive branches.

Input

First line of input contains two numbers: N and Q (2 ≤ N ≤ 100; 1 ≤ Q ≤ N − 1). N denotes the number of enumerated points in a tree. Q denotes amount of branches that should be preserved. NextN − 1 lines contains descriptions of branches. Each description consists of a three integer numbers divided by spaces. The first two of them define branch by it's ending points. The third number defines the number of apples on this branch. You may assume that no branch contains more than 30000 apples.

Output

Output should contain the only number — amount of apples that can be preserved. And don't forget to preserve tree's root ;-)

Sample

input output
5 2
1 3 1
1 4 10
2 3 20
3 5 20
21

题目大意:n个点 n-1条边,现在要保留Q条边,求保留下的边的去权值和的最大值。

把边的权值映射到点上,边的权值相当于这个点指向根节点的权值,所以问题转换成对点的操作。

先统计出以当前点为根节点的子树的点数(包括当前根节点),然后dp,

这里dp,以u为根节点保留j个点能得到最大值,状态转移方程

dp[u][j]=max(dp[u][j],dp[u][j-k]+dp[v]k]+val)

val是v到u的权值。

/* ***********************************************
Author :guanjun
Created Time :2016/10/15 15:43:48
File Name :timus1018.cpp
************************************************ */
#include <bits/stdc++.h>
#define ull unsigned long long
#define ll long long
#define mod 90001
#define INF 0x3f3f3f3f
#define maxn 10010
#define cle(a) memset(a,0,sizeof(a))
const ull inf = 1LL << ;
const double eps=1e-;
using namespace std;
priority_queue<int,vector<int>,greater<int> >pq;
struct Node{
int x,y;
};
struct cmp{
bool operator()(Node a,Node b){
if(a.x==b.x) return a.y> b.y;
return a.x>b.x;
}
}; bool cmp(int a,int b){
return a>b;
}
struct node{
int y;
int val;
}; vector<node>v[];
int sz[],n,m,num;
int dp[][];
void dfs(int u,int fa){
num++;
sz[u]=;
for(int i=;i<v[u].size();i++){
int y=v[u][i].y;
if(y==fa)continue;
dfs(y,u);
sz[u]+=sz[y];
}
}
void dfs2(int u,int fa){
for(int i=;i<v[u].size();i++){
int y=v[u][i].y;
int val=v[u][i].val;
if(y==fa)continue;
//cout<<u<<" "<<sz[u]<<endl;
dfs2(y,u);
for(int j=sz[u];j>;j--){
for(int k=;k<j;k++){
dp[u][j]=max(dp[u][j],dp[u][j-k]+dp[y][k]+val);
}
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
//freopen("out.txt","w",stdout);
while(cin>>n>>m){
num=;
int x,y,z;
cle(sz);
for(int i=;i<n;i++){
cin>>x>>y>>z;
v[x].push_back({y,z});
v[y].push_back({x,z});
}
cle(dp);
dfs(,-);
dfs2(,-);
cout<<dp[][m+]<<endl;
}
return ;
}

timus 1018. Binary Apple Tree的更多相关文章

  1. CJOJ 1976 二叉苹果树 / URAL 1018 Binary Apple Tree(树型动态规划)

    CJOJ 1976 二叉苹果树 / URAL 1018 Binary Apple Tree(树型动态规划) Description 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的 ...

  2. URAL 1018 Binary Apple Tree(树DP)

    Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a bina ...

  3. Ural 1018 Binary Apple Tree

    题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1018 Dynamic Programming. 首先要根据input建立树形结构,然后在 ...

  4. ural 1018 Binary Apple Tree(树形dp | 经典)

    本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

  5. BNUOJ 13358 Binary Apple Tree

    Binary Apple Tree Time Limit: 1000ms Memory Limit: 16384KB This problem will be judged on Ural. Orig ...

  6. 【URAL 1018】Binary Apple Tree

    http://vjudge.net/problem/17662 loli蜜汁(面向高一)树形dp水题 #include<cstdio> #include<cstring> #i ...

  7. URAL1018 Binary Apple Tree(树形DP)

    题目大概说一棵n结点二叉苹果树,n-1个分支,每个分支各有苹果,1是根,要删掉若干个分支,保留q个分支,问最多能保留几个苹果. 挺简单的树形DP,因为是二叉树,都不需要树上背包什么的. dp[u][k ...

  8. URAL1018 Binary Apple Tree(树dp)

    组队赛的时候的一道题,那个时候想了一下感觉dp不怎么好写呀,现在写了出来,交上去过了,但是我觉得我还是应该WA的呀,因为总感觉dp的不对. #pragma warning(disable:4996) ...

  9. URAL1018. Binary Apple Tree

    链接 简单树形DP #include <iostream> #include<cstdio> #include<cstring> #include<algor ...

随机推荐

  1. 并发编程学习笔记(3)----synchronized关键字以及单例模式与线程安全问题

    再说synchronized关键字之前,我们首先先小小的了解一个概念-内置锁. 什么是内置锁? 在java中,每个java对象都可以用作synchronized关键字的锁,这些锁就被称为内置锁,每个对 ...

  2. CAD绘制自定义实体(com接口)

    在cad使用过程中,用户可以绘制自定义实体.点击此处下载演示实例. 调用DrawCustomEntity函数,绘制一个自定义实体对象. 下面代码绘制一个自定义实体,C#代码实现如下: private ...

  3. Vue2.0 —生命周期和钩子函数

    vue生命周期简介 咱们从上图可以很明显的看出现在vue2.0都包括了哪些生命周期的函数了. 生命周期探究 对于执行顺序和什么时候执行,看上面两个图基本有个了解了.下面我们将结合代码去看看钩子函数的执 ...

  4. php中 如何找到session 的保存位置

    [前言] 刚刚想测试FQ操作,需要删除session,这里记录分享下 [主体] (1)想要查看session保存的目录,需要先找到 php.ini配置文件 (2)在php.ini文件中查找 sessi ...

  5. 第二节:1_C#中的委托的使用和讲解(转)

    C# 中的委托 引言 委托 和 事件在 .Net Framework中的应用非常广泛,然而,较好地理解委托和事件对很多接触C#时间不长的人来说并不容易.它们就像是一道槛儿,过了这个槛的人,觉得真是太容 ...

  6. JPA 与 JDBC 的区别和基本用法

    JPA 概念 JPA(Java Persistence API)用于对象持久化的 API,是 Java EE 5.0 平台标准的 ORM 规范,使得应用程序以统一的方式访问持久层. 与 JDBC 的对 ...

  7. org.springframework.data.repository.config.RepositoryConfigurationSource.getAttribute(Ljava/lang/String;)Ljava/util/Optional;

    升级springboot到2.0时,碰到了一大堆问题,上面异常原因是jar版本冲突了,有的模块忘记更新版本了,统一一下版本就可以了

  8. springboot+idea+jsp 404问题

    我是这么解决的 对于单一项目,加入以下jar包即可. <!--前台页面的支持--> <dependency> <groupId>javax.servlet</ ...

  9. TestNG超时测试

    用@Test(timeOut = XXX) 指定超时时间,单位是毫秒 package com.janson; import org.testng.annotations.Test; public cl ...

  10. Go:闭包

    闭包就是一个函数和与其相关的引用环境组合的一个整体(实体). package main import "fmt" func add() func(int) int { i := 0 ...