1018. Binary Apple Tree

Time limit: 1.0 second
Memory limit: 64 MB
Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a binary tree, i.e. any biparous branch splits up to exactly two new branches. We will enumerate by integers the root of binary apple tree, points of branching and the ends of twigs. This way we may distinguish different branches by their ending points. We will assume that root of tree always is numbered by 1 and all numbers used for enumerating are numbered in range from 1 to N, where N is the total number of all enumerated points. For instance in the picture below N is equal to 5. Here is an example of an enumerated tree with four branches:
2   5
\ /
3 4
\ /
1
As you may know it's not convenient to pick an apples from a tree when there are too much of branches. That's why some of them should be removed from a tree. But you are interested in removing branches in the way of minimal loss of apples. So your are given amounts of apples on a branches and amount of branches that should be preserved. Your task is to determine how many apples can remain on a tree after removing of excessive branches.

Input

First line of input contains two numbers: N and Q (2 ≤ N ≤ 100; 1 ≤ Q ≤ N − 1). N denotes the number of enumerated points in a tree. Q denotes amount of branches that should be preserved. NextN − 1 lines contains descriptions of branches. Each description consists of a three integer numbers divided by spaces. The first two of them define branch by it's ending points. The third number defines the number of apples on this branch. You may assume that no branch contains more than 30000 apples.

Output

Output should contain the only number — amount of apples that can be preserved. And don't forget to preserve tree's root ;-)

Sample

input output
5 2
1 3 1
1 4 10
2 3 20
3 5 20
21

题目大意:n个点 n-1条边,现在要保留Q条边,求保留下的边的去权值和的最大值。

把边的权值映射到点上,边的权值相当于这个点指向根节点的权值,所以问题转换成对点的操作。

先统计出以当前点为根节点的子树的点数(包括当前根节点),然后dp,

这里dp,以u为根节点保留j个点能得到最大值,状态转移方程

dp[u][j]=max(dp[u][j],dp[u][j-k]+dp[v]k]+val)

val是v到u的权值。

/* ***********************************************
Author :guanjun
Created Time :2016/10/15 15:43:48
File Name :timus1018.cpp
************************************************ */
#include <bits/stdc++.h>
#define ull unsigned long long
#define ll long long
#define mod 90001
#define INF 0x3f3f3f3f
#define maxn 10010
#define cle(a) memset(a,0,sizeof(a))
const ull inf = 1LL << ;
const double eps=1e-;
using namespace std;
priority_queue<int,vector<int>,greater<int> >pq;
struct Node{
int x,y;
};
struct cmp{
bool operator()(Node a,Node b){
if(a.x==b.x) return a.y> b.y;
return a.x>b.x;
}
}; bool cmp(int a,int b){
return a>b;
}
struct node{
int y;
int val;
}; vector<node>v[];
int sz[],n,m,num;
int dp[][];
void dfs(int u,int fa){
num++;
sz[u]=;
for(int i=;i<v[u].size();i++){
int y=v[u][i].y;
if(y==fa)continue;
dfs(y,u);
sz[u]+=sz[y];
}
}
void dfs2(int u,int fa){
for(int i=;i<v[u].size();i++){
int y=v[u][i].y;
int val=v[u][i].val;
if(y==fa)continue;
//cout<<u<<" "<<sz[u]<<endl;
dfs2(y,u);
for(int j=sz[u];j>;j--){
for(int k=;k<j;k++){
dp[u][j]=max(dp[u][j],dp[u][j-k]+dp[y][k]+val);
}
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
//freopen("out.txt","w",stdout);
while(cin>>n>>m){
num=;
int x,y,z;
cle(sz);
for(int i=;i<n;i++){
cin>>x>>y>>z;
v[x].push_back({y,z});
v[y].push_back({x,z});
}
cle(dp);
dfs(,-);
dfs2(,-);
cout<<dp[][m+]<<endl;
}
return ;
}

timus 1018. Binary Apple Tree的更多相关文章

  1. CJOJ 1976 二叉苹果树 / URAL 1018 Binary Apple Tree(树型动态规划)

    CJOJ 1976 二叉苹果树 / URAL 1018 Binary Apple Tree(树型动态规划) Description 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的 ...

  2. URAL 1018 Binary Apple Tree(树DP)

    Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a bina ...

  3. Ural 1018 Binary Apple Tree

    题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1018 Dynamic Programming. 首先要根据input建立树形结构,然后在 ...

  4. ural 1018 Binary Apple Tree(树形dp | 经典)

    本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

  5. BNUOJ 13358 Binary Apple Tree

    Binary Apple Tree Time Limit: 1000ms Memory Limit: 16384KB This problem will be judged on Ural. Orig ...

  6. 【URAL 1018】Binary Apple Tree

    http://vjudge.net/problem/17662 loli蜜汁(面向高一)树形dp水题 #include<cstdio> #include<cstring> #i ...

  7. URAL1018 Binary Apple Tree(树形DP)

    题目大概说一棵n结点二叉苹果树,n-1个分支,每个分支各有苹果,1是根,要删掉若干个分支,保留q个分支,问最多能保留几个苹果. 挺简单的树形DP,因为是二叉树,都不需要树上背包什么的. dp[u][k ...

  8. URAL1018 Binary Apple Tree(树dp)

    组队赛的时候的一道题,那个时候想了一下感觉dp不怎么好写呀,现在写了出来,交上去过了,但是我觉得我还是应该WA的呀,因为总感觉dp的不对. #pragma warning(disable:4996) ...

  9. URAL1018. Binary Apple Tree

    链接 简单树形DP #include <iostream> #include<cstdio> #include<cstring> #include<algor ...

随机推荐

  1. Codeforces_761_E_(dfs)

    E. Dasha and Puzzle time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  2. MySql(五)select排序查询

    举个栗子/**查询员工信息,要求工资按照从高到低进行排序(默认升序)**/SELECT * FROM employees ORDER BY salary ASC;/**方法2:**/SELECT * ...

  3. ThinkPHP---案例1登录登出和添加部门

    配置文件分3类:系统配置文件,分组配置文件,应用配置文件 ①系统配置文件ThinkPHP/Conf/convention.php: ②分组 / 模块 /平台配置文件Home/Conf/config.p ...

  4. xmpp获取好友信息和添加删除好友(4)

    原始地址: XMPPFrameWork IOS 开发(五)获取好友信息和添加删除好友 好友列表和好友名片 [_xmppRoster fetchRoster];//获取好友列表 //获取到一个好友节点 ...

  5. Luogu P4503 [CTSC2014]企鹅QQ

    思路 如果直接暴力的比较的话,不用想也知道会超时 所以考虑另一种方法,将前缀和的思想运用到hash中.用两个hash,一个从前往后记录,一个从后往前记录,然后枚举哪一位是不相同的,然后删掉这一位,将这 ...

  6. UVA - 12589 Learning Vector(dp-01背包)

    题目: 思路: dp[j][h]表示选取了j个向量,且高度为h,利用01背包来解决问题. 没选当前的向量:dp[j][h] = dp[j][h]; 选了当前的向量:dp[j][h] = dp[j-1] ...

  7. 1002 A+B for Polynomials (PAT (Advanced Level) Practice)

    This time, you are supposed to find A+B where A and B are two polynomials. Input Specification: Each ...

  8. ubuntu jdk和tomcat配置

    先查看linux的版通过file /sbin/init命令,下载对应版本的jdk. 我的ubuntu是64位的(桌面系统),所以下载的是jdk-7u71-linux-x64.tar.gz 在home的 ...

  9. 【02】json语法

    [02] JSON 语法是 JavaScript 语法的子集. JSON 语法规则 JSON 语法是 JavaScript 对象表示法语法的子集. 数据在名称/值对中 数据由逗号分隔 花括号保存对象 ...

  10. 数据库中间件MyCat学习总结(1)——MyCat入门简介

    为什么需要MyCat? 虽然云计算时代,传统数据库存在着先天性的弊端,但是NoSQL数据库又无法将其替代.如果传统数据易于扩展,可切分,就可以避免单机(单库)的性能缺陷. MyCat的目标就是:低成本 ...