1018. Binary Apple Tree

Time limit: 1.0 second
Memory limit: 64 MB
Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a binary tree, i.e. any biparous branch splits up to exactly two new branches. We will enumerate by integers the root of binary apple tree, points of branching and the ends of twigs. This way we may distinguish different branches by their ending points. We will assume that root of tree always is numbered by 1 and all numbers used for enumerating are numbered in range from 1 to N, where N is the total number of all enumerated points. For instance in the picture below N is equal to 5. Here is an example of an enumerated tree with four branches:
2   5
\ /
3 4
\ /
1
As you may know it's not convenient to pick an apples from a tree when there are too much of branches. That's why some of them should be removed from a tree. But you are interested in removing branches in the way of minimal loss of apples. So your are given amounts of apples on a branches and amount of branches that should be preserved. Your task is to determine how many apples can remain on a tree after removing of excessive branches.

Input

First line of input contains two numbers: N and Q (2 ≤ N ≤ 100; 1 ≤ Q ≤ N − 1). N denotes the number of enumerated points in a tree. Q denotes amount of branches that should be preserved. NextN − 1 lines contains descriptions of branches. Each description consists of a three integer numbers divided by spaces. The first two of them define branch by it's ending points. The third number defines the number of apples on this branch. You may assume that no branch contains more than 30000 apples.

Output

Output should contain the only number — amount of apples that can be preserved. And don't forget to preserve tree's root ;-)

Sample

input output
5 2
1 3 1
1 4 10
2 3 20
3 5 20
21

题目大意:n个点 n-1条边,现在要保留Q条边,求保留下的边的去权值和的最大值。

把边的权值映射到点上,边的权值相当于这个点指向根节点的权值,所以问题转换成对点的操作。

先统计出以当前点为根节点的子树的点数(包括当前根节点),然后dp,

这里dp,以u为根节点保留j个点能得到最大值,状态转移方程

dp[u][j]=max(dp[u][j],dp[u][j-k]+dp[v]k]+val)

val是v到u的权值。

/* ***********************************************
Author :guanjun
Created Time :2016/10/15 15:43:48
File Name :timus1018.cpp
************************************************ */
#include <bits/stdc++.h>
#define ull unsigned long long
#define ll long long
#define mod 90001
#define INF 0x3f3f3f3f
#define maxn 10010
#define cle(a) memset(a,0,sizeof(a))
const ull inf = 1LL << ;
const double eps=1e-;
using namespace std;
priority_queue<int,vector<int>,greater<int> >pq;
struct Node{
int x,y;
};
struct cmp{
bool operator()(Node a,Node b){
if(a.x==b.x) return a.y> b.y;
return a.x>b.x;
}
}; bool cmp(int a,int b){
return a>b;
}
struct node{
int y;
int val;
}; vector<node>v[];
int sz[],n,m,num;
int dp[][];
void dfs(int u,int fa){
num++;
sz[u]=;
for(int i=;i<v[u].size();i++){
int y=v[u][i].y;
if(y==fa)continue;
dfs(y,u);
sz[u]+=sz[y];
}
}
void dfs2(int u,int fa){
for(int i=;i<v[u].size();i++){
int y=v[u][i].y;
int val=v[u][i].val;
if(y==fa)continue;
//cout<<u<<" "<<sz[u]<<endl;
dfs2(y,u);
for(int j=sz[u];j>;j--){
for(int k=;k<j;k++){
dp[u][j]=max(dp[u][j],dp[u][j-k]+dp[y][k]+val);
}
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
//freopen("out.txt","w",stdout);
while(cin>>n>>m){
num=;
int x,y,z;
cle(sz);
for(int i=;i<n;i++){
cin>>x>>y>>z;
v[x].push_back({y,z});
v[y].push_back({x,z});
}
cle(dp);
dfs(,-);
dfs2(,-);
cout<<dp[][m+]<<endl;
}
return ;
}

timus 1018. Binary Apple Tree的更多相关文章

  1. CJOJ 1976 二叉苹果树 / URAL 1018 Binary Apple Tree(树型动态规划)

    CJOJ 1976 二叉苹果树 / URAL 1018 Binary Apple Tree(树型动态规划) Description 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的 ...

  2. URAL 1018 Binary Apple Tree(树DP)

    Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a bina ...

  3. Ural 1018 Binary Apple Tree

    题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1018 Dynamic Programming. 首先要根据input建立树形结构,然后在 ...

  4. ural 1018 Binary Apple Tree(树形dp | 经典)

    本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

  5. BNUOJ 13358 Binary Apple Tree

    Binary Apple Tree Time Limit: 1000ms Memory Limit: 16384KB This problem will be judged on Ural. Orig ...

  6. 【URAL 1018】Binary Apple Tree

    http://vjudge.net/problem/17662 loli蜜汁(面向高一)树形dp水题 #include<cstdio> #include<cstring> #i ...

  7. URAL1018 Binary Apple Tree(树形DP)

    题目大概说一棵n结点二叉苹果树,n-1个分支,每个分支各有苹果,1是根,要删掉若干个分支,保留q个分支,问最多能保留几个苹果. 挺简单的树形DP,因为是二叉树,都不需要树上背包什么的. dp[u][k ...

  8. URAL1018 Binary Apple Tree(树dp)

    组队赛的时候的一道题,那个时候想了一下感觉dp不怎么好写呀,现在写了出来,交上去过了,但是我觉得我还是应该WA的呀,因为总感觉dp的不对. #pragma warning(disable:4996) ...

  9. URAL1018. Binary Apple Tree

    链接 简单树形DP #include <iostream> #include<cstdio> #include<cstring> #include<algor ...

随机推荐

  1. day20-面向对象基础

    目录 面向对象基础 面向过程编程与面向对象编程 面向过程编程 面向对象编程 类与对象 类 对象 定义类和对象 定制对象独有特征 对象属性查找顺序 类与对象的绑定方法 类与数据类型 对象的高度整合 面向 ...

  2. CAD使用GetAllAppName读所有名称(网页版)

    主要用到函数说明: MxDrawEntity::GetAllAppName 得到所有扩展数据名称,详细说明如下: 参数 说明 [out, retval] IMxDrawResbuf** ppRet 返 ...

  3. 04Servlet的生命周期

    Servlet的生命周期 Servlet运行在Servlet容器中,其生命周期由容器来管理.Servlet的生命周期通过javax.servlet.Servlet接口中的init().service( ...

  4. 100 道 Linux 笔试题,能拿 80 分就算大神!

    本套笔试题共100题,每题1分,共100分.(参考答案在文章末尾) 1. cron 后台常驻程序 (daemon) 用于: A. 负责文件在网络中的共享 B. 管理打印子系统C. 跟踪管理系统信息和错 ...

  5. 模板—treap

    #include<iostream> #include<cstdio> #include<cstdlib> #define INF 0x7fffffff using ...

  6. Spring事物不回滚

    今天发现个自己的bug,仔细排查后,发现根本原因我在service方法中抛出的异常被控制层的方法捕获了,所以后台页面也只是出现个错误提示,而数据却没有回滚. 解决方式:对自己抛出的异常使用try ca ...

  7. [Luogu] P3258 [JLOI2014]松鼠的新家

    题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在”树“上. 松鼠想邀请小熊维尼前 ...

  8. python 使用time / datetime进行时间、时间戳、日期转换

    python 使用time 进行时间.时间戳.日期格式转换 #!/usr/bin/python3 # -*- coding: utf-8 -*- # @Time : 2017/11/7 15:53 # ...

  9. 集合:Collection

    why ? when ? how ? what ? Java 集合框架图 由上图我们可以看到,Java 集合主要分为两类:Collection 和 Map. Collection 接口 遍历 Coll ...

  10. MySQL4

    MySQL数据库4 1 管理索引 创建索引帮助 help CREATE INDEX 创建索引 指令 CREATE INDEX 语法格式 CREATE INDEX index_name ON tbl_n ...