状压DP问题
状态压缩·一
题目传送:#1044 : 状态压缩·一
AC代码:
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <sstream>
#include <utility>
#include <iostream>
#include <algorithm>
#include <functional>
#define LL long long
#define INF 0x7fffffff
using namespace std;
int n, m, q;
int w[1005];
int dp[1005][1030];//dp[i][j]表示选到第i个位置时j状态能够取得的最大值
int cnt[1030];//代表每一个数的位数上的1的个数
int main() {
cnt[0] = 0, cnt[1] = 1;
for(int i = 2; i < 1030; i ++) cnt[i] = cnt[i >> 1] + cnt[i & 1];
scanf("%d %d %d", &n, &m, &q);
for(int i = 1; i <= n; i ++) {
scanf("%d", &w[i]);
}
int ans = 0;
int d = 1 << m;
for(int i = 1; i <= n; i ++) {
for(int j = 0; j < (1 << m); j ++) {
if(cnt[j] <= q) dp[i][j] = max(dp[i-1][j >> 1], dp[i-1][(j >> 1) + (1 << (m - 1))]) + (j & 1) * w[i];
ans = max(ans, dp[i][j]);
}
}
printf("%d\n", ans);
return 0;
}
Hackers’ Crackdown
题目传送:UVA - 11825 - Hackers’ Crackdown
AC代码:
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <sstream>
#include <utility>
#include <iostream>
#include <algorithm>
#include <functional>
#define LL long long
#define INF 0x7fffffff
using namespace std;
const int maxn = (1 << 16) + 5;
int dp[maxn];//dp[i]表示子集i最多能够分成多少组
int cover[maxn];//cover[i]表示若干集合(i中所表示的集合)的并集
int n, m;
int P[25];//P[i]表示与i相连的数的集合(包含i)
int main() {
int cas = 1;
while(scanf("%d", &n) != EOF) {
if(n == 0) break;
for(int i = 0; i < n; i ++) {
scanf("%d", &m);
P[i] = 1 << i;
int t;
while(m --) {
scanf("%d", &t);
P[i] |= (1 << t);//并入集合i
}
}
for(int i = 0; i < maxn; i ++) {
cover[i] = 0;
for(int j = 0; j < n; j ++) {//if推断j是否在i中,是得话就并入
if(i & (1 << j)) cover[i] |= P[j];
}
}
dp[0] = 0;
int tot = (1 << n) - 1;//全集总数
for(int i = 1; i <= tot; i ++) {//依次枚举全集,由于要先算出前一状态才干推出后一状态
dp[i] = 0;
for(int j = i; j; j = (j - 1) & i) {//枚举子集的技巧,重点!
if(cover[j] == tot) {//i的子集j等于全集,则运行状态转移
dp[i] = max(dp[i], dp[i ^ j] + 1);
}
}
}
printf("Case %d: %d\n", cas ++, dp[tot]);
}
return 0;
}
Sharing Chocolate
题目传送:UVALive - 4794 - Sharing Chocolate
WF2010的题。
AC代码:
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <sstream>
#include <utility>
#include <iostream>
#include <algorithm>
#include <functional>
#define LL long long
#define INF 0x7fffffff
using namespace std;
const int maxn = 16;
int d[1 << maxn][105];
int vis[1 << maxn][105];
int sum[1 << maxn];
int a[maxn];
int n;
int bitcount(int x) {
return x == 0 ? 0 : bitcount(x / 2) + (x & 1);
}
int dp(int s, int x) {//每次递归找出集合为s。宽为x的巧克力能否够满足要求
if(vis[s][x]) return d[s][x];
vis[s][x] = 1;
int& ans = d[s][x];
if(bitcount(s) == 1) return ans = 1;//此时为边界。即仅仅有一块巧克力的情况,肯定是满足的
int y = sum[s] / x;//还有一个边长能够依据这个求得
for(int s0 = (s - 1) & s; s0; s0 = (s0 - 1) & s) {//枚举子集
int s1 = s - s0;
if(sum[s0] % x == 0 && dp(s0, min(x, sum[s0] / x)) && dp(s1, min(x, sum[s1] / x))) return ans = 1;//竖着切(这里假定宽x是竖着的)
if(sum[s0] % y == 0 && dp(s0, min(y, sum[s0] / y)) && dp(s1, min(y, sum[s1] / y))) return ans = 1;//横着切
}
return ans = 0;
}
int main() {
int cas = 1, x, y;
while(scanf("%d", &n) != EOF) {
if(n == 0) break;
scanf("%d %d", &x, &y);
for(int i = 0; i < n; i ++) scanf("%d", &a[i]);
//计算每一个子集的元素的和
memset(sum, 0, sizeof(sum));
for(int s = 0; s < (1 << n); s ++) {
for(int i = 0; i < n; i ++) if(s & (1 << i)) sum[s] += a[i];
}
memset(vis, 0, sizeof(vis));
int ALL = (1 << n) - 1;
int ans;
if(sum[ALL] != x * y) ans = 0;
else ans = dp(ALL, min(x, y));
printf("Case %d: %s\n", cas ++, ans ?
"Yes" : "No");
}
return 0;
}
状压DP问题的更多相关文章
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
- nefu1109 游戏争霸赛(状压dp)
题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...
- poj3311 TSP经典状压dp(Traveling Saleman Problem)
题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...
- [NOIP2016]愤怒的小鸟 D2 T3 状压DP
[NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...
- 【BZOJ2073】[POI2004]PRZ 状压DP
[BZOJ2073][POI2004]PRZ Description 一只队伍在爬山时碰到了雪崩,他们在逃跑时遇到了一座桥,他们要尽快的过桥. 桥已经很旧了, 所以它不能承受太重的东西. 任何时候队伍 ...
- bzoj3380: [Usaco2004 Open]Cave Cows 1 洞穴里的牛之一(spfa+状压DP)
数据最多14个有宝藏的地方,所以可以想到用状压dp 可以先预处理出每个i到j的路径中最小权值的最大值dis[i][j] 本来想用Floyd写,无奈太弱调不出来..后来改用spfa 然后进行dp,这基本 ...
- HDU 1074 Doing Homework (状压dp)
题意:给你N(<=15)个作业,每个作业有最晚提交时间与需要做的时间,每次只能做一个作业,每个作业超出最晚提交时间一天扣一分 求出扣的最小分数,并输出做作业的顺序.如果有多个最小分数一样的话,则 ...
- 【BZOJ1688】[Usaco2005 Open]Disease Manangement 疾病管理 状压DP
[BZOJ1688][Usaco2005 Open]Disease Manangement 疾病管理 Description Alas! A set of D (1 <= D <= 15) ...
- 【BZOJ1725】[Usaco2006 Nov]Corn Fields牧场的安排 状压DP
[BZOJ1725][Usaco2006 Nov]Corn Fields牧场的安排 Description Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M< ...
- 【BZOJ1087】 [SCOI2005]互不侵犯King 状压DP
经典状压DP. f[i][j][k]=sum(f[i-1][j-cnt[k]][k]); cnt[i]放置情况为i时的国王数量 前I行放置情况为k时国王数量为J #include <iostre ...
随机推荐
- hibernate 批量抓取
使用场景: 是查询出来一个集合,然后又查询每个集合对象中的集合.使用set标签中的batch-size属性实现. 数据库中只有5个区道信息: 设置batch-size=”5”,执行的查询语句如下: 而 ...
- 正则表达式,匹配查找函数(preg_match_all)flags参数对比
格式: int preg_match_all ( string pattern, string subject, array matches [, int flags] ) 参数 flags 选项有以 ...
- 解决android的键盘弹出时,html页面的高度被压缩
如果元素的高度是用100%表示,那么,安卓的键盘弹出时,高度会发生变化,导致布局混乱,所以最好给高度设置像素高度 $("html,body").height(window.inne ...
- 判断Exe(DLL)和符号文件是否匹配---验证模块和符号文件是否匹配的工具和方法
当我们进行程序调试时,有时调试器会直接告诉你符号文件不对,或则显示出的调用栈不对,当你怀疑符号文件不匹配时,如何确定呢? 如果是用windbg调试,请用 !chksym 模块名比如,匹配的时候 不匹 ...
- Vue-cli 3.0自定义脚手架
一.进入项目地址 https://github.com/vuejs/vue-cli ,选择 docs目录查看具体安装流程. 中文文档:https://cli.vuejs.org/zh 可以看到我电脑上 ...
- Ztree勾选节点后取消勾选其父子节点
前言: Ztree官方给的API可以设置勾选一个节点的同时勾选子节点或者父节点,也可以设置不影响父子节点,即将chkboxType设置为{"Y":"",&quo ...
- Python中关于使用正则表达式相关的部分笔记
一点点自己记的笔记,如果各位朋友看不懂,可以在评论区留言,会尽可能快的回复. 所有的知识点全部贴在代码上了,注释也写了. 建议大伙把代码拷到自己的机器上,运行,查看结果,然后,结合注释,再自己稍稍理解 ...
- 集训第六周 M题
Description During the early stages of the Manhattan Project, the dangers of the new radioctive ma ...
- JS数组添加元素的三种方式
1.push() 结尾添加 数组.push(元素) 参数 描述 newelement1 必需.要添加到数组的第一个元素. newelement2 可选.要添加到数组的第二个元素. newelement ...
- windows10开启内置ubuntu系统,使用xshell连接
windows安装配置ubuntu系统内置子系统 官方文档:https://docs.microsoft.com/zh-cn/windows/wsl/about https://www.jianshu ...