It's my first time to write a blog in EnglishChinglish, so it may be full of mistakes in grammar.

Problem:

Codeforces866E

Analysis:

First, we determine \(S\geq T\), then \(S-T=A\), where \(A\) is the known number, and \(S\) is shuffled from \(T\). Then move \(T\) to the right so we have \(S=T+A\).

Think about how to calculate \(T+A\) in writing. If undo all Jinwei (This is Chinese Pinyin. I don't know how to express it in English. Jinwei means if \(T_i+A_i\) is not less than \(16\) in hex, then subtract \(16\) from it and add \(1\) to \(S_{i+1}\)), then for every digit, it's \(T_i+A_i=S'_i\) (\(S'_i\) can be greater than \(15\) now). Now, \(\sum T_i + \sum A_i = \sum S'_i\). But because of \(S\) is shuffled from \(T\), \(\sum T_i\) should be equal to \(\sum S_i\). Fortunately, every Jinwei can subtract \(15\) from \(\sum S'_i\), because Jinwei is subtracting \(16\) from \(S'_i\) and add \(1\) to \(S'_{i+1}\). Thus, possible \(S\) and \(T\) exist only when \(A\) is divisible by \(15\).

If \(A\) is divisible by \(15\), \(\frac{\sum A_i}{15}\) is the times that Jinwei happens. We can determine whether a Jinwei happens on a dight one after another. Jinwei can't happen on the hightest dight, so the total number of ways that exactly \(\frac{\sum A_i}{15}\) Jinweis happen is \(C_{|T|-1}^{\frac{\sum A_i}{15}}\), where \(|T|\) is the length of \(T\). It's not greater than \(C_{13}^{\lfloor \frac{13}{2} \rfloor}=1716\).

Now we have determined which digits Jinweis happen on, so we can offset the effect of Jinweis by changing \(A\). Specifically, if a Jinwei happens on the digit \(i\), so that \(T_i+A_i-16=S_i\) and \(T_{i+1}+A_{i+1}+1=S_{i+1}\), we can subtract \(16\) from \(A_i\) and add \(1\) to \(A_{i+1}\) ( \(A_i\) now can be more than \(15\) or less than \(0\) ) , then for every \(i\), there's \(T_i+A_i=S_i\). In this way, every digit will be independent. (From now on, \(A\) is the changed one. )

Let's try to structure a possible answer. It should be noticed that now there's no Jinwei happens, or the answer is invalid. An useful fact is, there's at least one \(T_i\) that is \(0\), or subtract the minimum in \(T\) from each \(T_i\) and \(S_i\), so that every \(T_i+A_i=S_i\) is valid as well, but we get a less \(T\). To minimize \(T\), let's put \(0\) on the highest digit directly.

Define \(f[S]\) is the minimum of \(T\) when the digits in the set \(S\) have been decided. Because the number on the highest digit must be \(0\) and there's no need to consider that digit, \(S\) is not contain the highest digit. Each time we decide put \(a\) on a digit \(i\), we'll get a new number \(a+A_i\) that waiting to be put. This new number after deciding all digits in the set \(S\) is exactly \(\sum_{i\in S}A_i+A_{|T|-1}\) ( \(|T|-1\) is the highest digit) , because the first number we put is \(0\), and then we get \(A_{|T|-1}\); the second number we put is \(A_{|T|-1|}\) on digit \(i\) and we get \(A_{|T|-1}+A_i\) and so on. In the end, because of our way to change \(A_i\), \(\sum A_i\) must be \(0\), and \(0\) has already been put on the highest digit. How lucky we are!

Now the problem is easy. For every \(S\), choose a digit \(i\) and try to put the new number \(sum[S]\) (in the code it's called like that, but I don't know why, maybe because Tzz is a mouther) on it.

For more details, please read the code.

Code:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cctype>
#include <set>
using namespace std; namespace zyt
{
template<typename T>
inline bool read(T &x)
{
char c;
bool f = false;
x = 0;
do
c = getchar();
while (c != EOF && c != '-' && !isdigit(c));
if (c == EOF)
return false;
if (c == '-')
f = true, c = getchar();
do
x = x * 10 + c - '0', c = getchar();
while (isdigit(c));
if (f)
x = -x;
return true;
}
inline bool read(char &c)
{
do
c = getchar();
while (c != EOF && !isgraph(c));
return c != EOF;
}
template<typename T>
inline void write(T x)
{
static char buf[20];
char *pos = buf;
if (x < 0)
putchar('-'), x = -x;
do
*pos++ = x % 10 + '0';
while (x /= 10);
while (pos > buf)
putchar(*--pos);
}
inline void write(const char *const s)
{
printf("%s", s);
}
typedef long long ll;
const int N = 15, D = 16, INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3fLL;
int len, arr[N], sum[1 << N];
ll ans = LINF, dp[1 << N];
inline bool check(const int a, const int p)
{
return a & (1 << p);
}
void solve()
{
memset(sum, 0, sizeof(int[1 << len]));
memset(dp, INF, sizeof(ll[1 << len]));
for (int i = 0; i < (1 << (len - 1)); i++)
{
sum[i] = arr[len - 1];
for (int j = 0; j < len - 1; j++)
if (check(i, j))
sum[i] += arr[j];
}
dp[0] = 0;
for (int i = 0; i < (1 << (len - 1)); i++)
{
if (sum[i] < 0 || sum[i] >= D || dp[i] > ans || dp[i] == LINF)
continue;
for (int j = 0; j < len - 1; j++)
if (!check(i, j))
dp[i | (1 << j)] = min(dp[i | (1 << j)], dp[i] + ((ll)sum[i] << (j << 2)));
}
ans = min(ans, dp[(1 << (len - 1)) - 1]);
;
}
void dfs(const int pos, const int rest)
{
if (pos < 0)
{
if (!rest)
solve();
return;
}
dfs(pos - 1, rest);
if (pos && rest)
{
++arr[pos], arr[pos - 1] -= D;
dfs(pos - 1, rest - 1);
--arr[pos], arr[pos - 1] += D;
}
}
int work()
{
char c;
while (read(c))
{
if (isdigit(c))
arr[len++] = c - '0';
else
arr[len++] = c - 'a' + 10;
}
reverse(arr, arr + len);
int sum = 0;
for (int i = 0; i < len; i++)
sum += arr[i];
if (sum % (D - 1))
{
write("NO");
return 0;
}
dfs(len - 1, sum / (D - 1));
if (ans == LINF)
write("NO");
else
{
static char buf[20];
char *pos = buf;
while (len--)
*pos++ = ((ans % D < 10) ? ans % D + '0' : ans % D - 10 + 'a'), ans /= D;
while (pos > buf)
putchar(*--pos);
}
return 0;
}
}
int main()
{
return zyt::work();
}

【Codeforces866E_CF866E】Hex Dyslexia(Structure & DP)的更多相关文章

  1. 【ACM】不要62 (数位DP)

    题目:http://acm.acmcoder.com/showproblem.php?pid=2089 杭州人称那些傻乎乎粘嗒嗒的人为62(音:laoer).杭州交通管理局经常会扩充一些的士车牌照,新 ...

  2. 【BalticOI2003】Gem 题解(树形DP)

    题目大意: 给树上每一个结点赋值(值为正整数),要求相邻结点的权值不能相同.问树上最小权值和.$n\leq 10000$. ------------------------- 设$f[i][j]$表示 ...

  3. 【UVA12093】Protecting Zonk (树形DP)

    题意: 给定一个有n个节点的无根树,有两种装置A和B,每种都有无限多个.在某个节点X使用A装置需要C1的花费,并且此时与节点X相连的边都被覆盖.在某个节点X使用B装置需要C2的花费,并且此时与节点X相 ...

  4. 【UVA1379】Pitcher Rotation (贪心+DP)

    题意: 你经营者一直棒球队.在接下来的g+10天中有g(3<=g<=200)场比赛,其中每天最多一场比赛.你已经分析出你的n(5<=n<=100)个投手中每个人对阵所有m个对手 ...

  5. 【51nod1299】监狱逃离(树形DP)

    点此看题面 大致题意: 在一棵树中有\(N\)条边连接\(N+1\)个节点,现在已知这棵树上的\(M\)个节点,要求封住最少的节点,使这\(M\)个节点中的任意一个节点无法到达叶子节点,若能办到输出最 ...

  6. 【Luogu】P2657windy数(数位DP)

    题目链接 正式迈入了数位DP的大门…… 心情激动 (看我立个flag,我如果专攻数位DP的话,到wc之前就会有秒数位DP蓝题的能力) 数位DP讲解链接 讲的非常详细,良心博客.比我写的博客加在一起还要 ...

  7. 【Luogu】P3174毛毛虫(树形DP)

    题目链接 树形DP水题,设f[x][0]是以x为根的子树,内部只有半条链(就是链的两个端点一个在子树里,一个不在子树里)的最大值,f[x][1]是以x为根的子树,内部有一条完整的链(选两个内部的子树作 ...

  8. 【bzoj1040】骑士[ZJOI2008](树形dp)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1040 这道题,很明显根据仇恨关系构造出的图形是一堆环套树.如果是普通的树,就可以马上裸树 ...

  9. 【CF1015F】Bracket Substring(字符串DP)

    题意:给定一个只由左右括号组成的字符串s,问长度为2*n的包含它的合法括号序列方案数,答案对1e9+7取模 1≤n≤100,1≤|s|≤200 思路:暴力预处理出s的每个前缀[0..i]后加左右括号分 ...

随机推荐

  1. 60.通过应用层join实现用户与博客的关联

    在构造数据模型的时候,将有关联关系的数据分割为不同的实体,类似于关系型数据库中的模型. 案例背景:博客网站,一个网站可能有多个用户,一个用户会发多篇博客,此时最好的方式是建立users和blogs两个 ...

  2. 53.doc value机制内核级原理深入探秘

    主要知识点: doc value的原理 doc value性能优化     一.doc value原理     1. 生成时间:index-time生成     PUT/POST的时候,就会生成doc ...

  3. vue-cli项目结构分析

    总体框架 一个vue-cli的项目结构如下,其中src文件夹是需要掌握的,所以本文也重点讲解其中的文件,至于其他相关文件,了解一下即可. 文件结构细分 1.build——[webpack配置] bui ...

  4. Mac安装Qt出现错误Could not resolve SDK Path for 'macosx'

    Qt 5.8 + Mac 10.14  qdevice.pri文件里没有网上说的那行应该改的代码,自己写上这句话也没有解决问题 最终解决方案: 在命令行输入:sudo xcode-select -s ...

  5. layui laypage 当前页刷新问题

    困扰了好几天的问题,终于找到答案了 在执行完代码后添加下面的代码实现当前页的刷新 $(".layui-laypage-btn").click(); 在解决问题的过程中,其实已经注意 ...

  6. 【Codeforces 682C】Alyona and the Tree

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 设dis[v]表示v以上的点到达这个点的最大权值(肯定是它的祖先中的某个点到这个点) 类似于最大连续累加和 当往下走(x,y)这条边的时候,设 ...

  7. vb 运行ppt示例代码

    来源:http://support.microsoft.com/kb/222929 通过使用 PowerPoint 中的自动运行功能,您可以以编程方式打印.显示幻灯片及执行以交互式执行的大多数事情.按 ...

  8. PHP小白学习日程之旅

    我是一名专升本的学生,在这里偶然接触了博客园,我觉得非常好,每天可以在这里看别人的分享与学习,还会在大学学习俩年,我只想专注的吧自己的技术提高,跟园子里的朋友们一起学习与分享加油!!!!!!!!!!! ...

  9. JVM内存分布和垃圾回收

    内存区域划分   程序计数器(Program counter Register) 描述  程序计数器(Program Counter Register)是一块较小的内存空间.它可以看作是当前线程执行的 ...

  10. 【Storage】IBM DS8100开机及配置过程

     ************************************************************************ ****原文:blog.csdn.net/cla ...