传送门

据rqy说有这么一个结论$$ans=\min_{v \in V,F_n(v)\neq \infty} \max_{0 \leq k \leq n - 1} \left[\frac{F_n(v)-F_k(v)}{n-k}\right]\qquad$$

其中新建一个节点\(S\)向所有点连边,\(F_i(v)\)表示从\(S\)开始经过恰好\(i\)条边到达\(v\)的最短路

代码里\(F\)的下标都减了\(1\)

证明这里

//minamoto
#include<bits/stdc++.h>
#define rint register int
#define inf 1e12
using namespace std;
const int N=3005,M=10005;
double F[N][N],w[M];int u[M],v[M],n,m;
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&m);
for(rint i=1;i<=m;++i)scanf("%d%d%lf",&u[i],&v[i],&w[i]);
for(rint i=0;i<=n;++i)for(rint j=1;j<=n;++j)F[i][j]=i?inf:0;
for(rint i=0;i<n;++i)for(rint j=1;j<=m;++j)
F[i+1][v[j]]=min(F[i+1][v[j]],F[i][u[j]]+w[j]);
double ans=inf,ans1;
for(rint i=1;i<=n;++i)if(F[n][i]<1e11){
ans1=-inf;
for(rint j=0;j<n;++j)ans1=max(ans1,(F[n][i]-F[j][i])/(n-j));
ans=min(ans,ans1);
}
printf("%.8lf\n",ans);return 0;
}

P3199 [HNOI2009]最小圈的更多相关文章

  1. 洛谷 P3199 [HNOI2009]最小圈

    P3199 [HNOI2009]最小圈 题目背景 如果你能提供题面或者题意简述,请直接在讨论区发帖,感谢你的贡献. 题目描述 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点 ...

  2. P3199 [HNOI2009]最小圈 01分数规划

    裸题,第二个权值是自己点的个数.二分之后用spfa判负环就行了. 题目描述 考虑带权的有向图G=(V,E)G=(V,E)G=(V,E)以及w:E→Rw:E\rightarrow Rw:E→R,每条边e ...

  3. 洛谷P3199 [HNOI2009]最小圈(01分数规划)

    题意 题目链接 Sol 暴力01分数规划可过 标算应该是这个 #include<bits/stdc++.h> #define Pair pair<int, double> #d ...

  4. bzoj 1486: [HNOI2009]最小圈 dfs求负环

    1486: [HNOI2009]最小圈 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1022  Solved: 487[Submit][Status] ...

  5. BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )

    二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...

  6. BZOJ_1486_[HNOI2009]最小圈_01分数规划

    BZOJ_1486_[HNOI2009]最小圈_01分数规划 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 ...

  7. [HNOI2009]最小圈 (二分答案+负环)

    题面:[HNOI2009]最小圈 题目描述: 考虑带权的有向图\(G=(V,E)\)以及\(w:E\rightarrow R\),每条边\(e=(i,j)(i\neq j,i\in V,j\in V) ...

  8. bzoj千题计划227:bzoj1486: [HNOI2009]最小圈

    http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...

  9. 【BZOJ1486】[HNOI2009]最小圈 分数规划

    [BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...

随机推荐

  1. 文件内容差异对比-python

    上次没精力时候,看了下python自动化运维,给print加了颜色,新鲜哒 今天来写写文件对比 step1:引入difflib库(无需安装,python自带) step2:将文件内容按行分割,spli ...

  2. 爬虫----Web_WeChat

    流程: 打开的web_wechat,就有出现二维码,在network中,name中login?loginicon中,status的状态是pending,pending的意思是前端发送了一个请求,但是还 ...

  3. PAT 1134 Vertex Cover

    A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at le ...

  4. Python基础(十一) 异常处理

    在程序运行过程中,总会遇到各种各样的错误,有的错误是程序编写有问题造成的,比如本来应该输出整数结果输出了字符串,这样的错误我们通常称之为BUG,BUG是必须修复的.在Python中内置了一套异常处理机 ...

  5. 关于构造函数及参数执行顺序说明(c#)

    原文:https://blog.csdn.net/junmail/article/details/83249186 构造函数的执行顺序: 子类静态变量>子类静态构造函数>子类非静态变量&g ...

  6. [codeVS3943] 数学奇才琪露诺

    题目描述 Description 作为上白泽慧音老师的出色弟子,数学奇才琪露诺在算术方面有很深的造诣.今天,codevs有幸请到了这位数学界的奇葩作为本场考试的第一题主考官. 琪露诺喜欢0-9之间的数 ...

  7. Oracle删除约束和主键的语句

    https://blog.csdn.net/xue_yanan/article/details/78210654?locationNum=8&fps=1

  8. Raphael.js image 在ie8以下的兼容性问题

    Raphael.js 在ie7,ie8浏览器内绘制图形採用的vml,在绘制image的时候会解析成 <?xml:namespace prefix = "rvml" ns = ...

  9. 【Spark】DAGScheduler源代码浅析

    DAGScheduler DAGScheduler的主要任务是基于Stage构建DAG,决定每个任务的最佳位置 记录哪个RDD或者Stage输出被物化 面向stage的调度层.为job生成以stage ...

  10. 【ubuntu firefox】 Firefox is already running, but is not responding

    在ubuntu下启动firefox报错 Firefox is already running, but is not responding. To open a new window, you mus ...