传送门

据rqy说有这么一个结论$$ans=\min_{v \in V,F_n(v)\neq \infty} \max_{0 \leq k \leq n - 1} \left[\frac{F_n(v)-F_k(v)}{n-k}\right]\qquad$$

其中新建一个节点\(S\)向所有点连边,\(F_i(v)\)表示从\(S\)开始经过恰好\(i\)条边到达\(v\)的最短路

代码里\(F\)的下标都减了\(1\)

证明这里

//minamoto
#include<bits/stdc++.h>
#define rint register int
#define inf 1e12
using namespace std;
const int N=3005,M=10005;
double F[N][N],w[M];int u[M],v[M],n,m;
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&m);
for(rint i=1;i<=m;++i)scanf("%d%d%lf",&u[i],&v[i],&w[i]);
for(rint i=0;i<=n;++i)for(rint j=1;j<=n;++j)F[i][j]=i?inf:0;
for(rint i=0;i<n;++i)for(rint j=1;j<=m;++j)
F[i+1][v[j]]=min(F[i+1][v[j]],F[i][u[j]]+w[j]);
double ans=inf,ans1;
for(rint i=1;i<=n;++i)if(F[n][i]<1e11){
ans1=-inf;
for(rint j=0;j<n;++j)ans1=max(ans1,(F[n][i]-F[j][i])/(n-j));
ans=min(ans,ans1);
}
printf("%.8lf\n",ans);return 0;
}

P3199 [HNOI2009]最小圈的更多相关文章

  1. 洛谷 P3199 [HNOI2009]最小圈

    P3199 [HNOI2009]最小圈 题目背景 如果你能提供题面或者题意简述,请直接在讨论区发帖,感谢你的贡献. 题目描述 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点 ...

  2. P3199 [HNOI2009]最小圈 01分数规划

    裸题,第二个权值是自己点的个数.二分之后用spfa判负环就行了. 题目描述 考虑带权的有向图G=(V,E)G=(V,E)G=(V,E)以及w:E→Rw:E\rightarrow Rw:E→R,每条边e ...

  3. 洛谷P3199 [HNOI2009]最小圈(01分数规划)

    题意 题目链接 Sol 暴力01分数规划可过 标算应该是这个 #include<bits/stdc++.h> #define Pair pair<int, double> #d ...

  4. bzoj 1486: [HNOI2009]最小圈 dfs求负环

    1486: [HNOI2009]最小圈 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1022  Solved: 487[Submit][Status] ...

  5. BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )

    二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...

  6. BZOJ_1486_[HNOI2009]最小圈_01分数规划

    BZOJ_1486_[HNOI2009]最小圈_01分数规划 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 ...

  7. [HNOI2009]最小圈 (二分答案+负环)

    题面:[HNOI2009]最小圈 题目描述: 考虑带权的有向图\(G=(V,E)\)以及\(w:E\rightarrow R\),每条边\(e=(i,j)(i\neq j,i\in V,j\in V) ...

  8. bzoj千题计划227:bzoj1486: [HNOI2009]最小圈

    http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...

  9. 【BZOJ1486】[HNOI2009]最小圈 分数规划

    [BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...

随机推荐

  1. 最大子段和(洛谷P1115,动态规划递推)

    洛谷题目链接 题目赋值出来格式有问题,所以我就只放题目链接了 下面为ac代码 #include<bits/stdc++.h> #define ll long long using name ...

  2. axios在实际项目中的使用介绍

    1.axios本身就封装了各种数据请求的方法 执行 GET 请求 // 为给定 ID 的 user 创建请求 axios.get('/user?ID=12345') .then(function (r ...

  3. HDU 1042 大数计算

    这道题一开始就采用将一万个解的表打好的话,虽然时间效率比较高,但是内存占用太大,就MLE 这里写好大数后,每次输入一个n,然后再老老实实一个个求阶层就好 java代码: /** * @(#)Main. ...

  4. Codeforces Round #254 (Div. 1) C DZY Loves Colors

    http://codeforces.com/contest/444/problem/C 题意:给出一个数组,初始时每个值从1--n分别是1--n.  然后两种操作. 1:操作 a.b内的数字是a,b内 ...

  5. [Vue @Component] Simplify Vue Components with vue-class-component

    While traditional Vue components require a data function which returns an object and a method object ...

  6. ORA-01925:maximum of 80 enabled roles exceeded

    ORA-01925:maximum of 80 enabled roles exceeded max_enabled_roles 9i的參数,10g及以后都不用了. 指定用户session的最大ena ...

  7. 【打CF,学算法——二星级】CF 520B Two Buttons

    [CF简单介绍] 提交链接:Two Buttons 题面: B. Two Buttons time limit per test 2 seconds memory limit per test 256 ...

  8. Oracle,mysql,sqlserver,postgresql语句几点比較

    1.分页 Oracle: SELECT * FROM(SELECT A.*, ROWNUM RN FROM (select T.* from sj_receiptinfo t WHERE t.TAXN ...

  9. 在oracle中操作表及字段注释,查询一个表的所有字段名以及属性和约束

    1.查询表注释 SELECT * FROM USER_TAB_COMMENTS; 三列:TABLE_NAME,TABLE_TYPE,COMMENTS 2.查询字段注释 SELECT * FROM US ...

  10. 【树剖求LCA】树剖知识点

    不太优美但是有注释的版本: #include<cstdio> #include<iostream> using namespace std; struct edge{ int ...