传送门

首先这题的本质就是把\(n\)分成若干个数的和,求他们的\(lcm\)有多少种情况

然后据说有这么个结论:若\(p_1^{c_1}+p_2^{c_2}+...+p_m^{c_m}\leq n\),则\(ans=p_1^{c_1}p_2^{c_2}...p_m^{c_m}\)就是一个可行的\(lcm\)

证明我不会,可以看这里

然而总感觉上面的证法有哪里不太对……

不管了反正总之dp就可以了

//minamoto
#include<bits/stdc++.h>
#define ll long long
#define fp(i,a,b) for(register int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(register int i=a,I=b-1;i>I;--i)
using namespace std;
const int N=1000;
int p[N],m,n;bool vis[N+5];ll f[205][N+5];
void init(){
fp(i,2,N){
if(!vis[i])p[++m]=i;
for(register int j=1;j<=m&&i*p[j]<=N;++j){
vis[i*p[j]]=1;
if(i%p[j]==0)break;
}
}
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n),init();
fp(i,0,m)f[i][0]=1;fp(i,1,n)f[0][i]=1;
fp(i,1,m)fp(j,1,n){
f[i][j]=f[i-1][j];
for(register int k=p[i];k<=j;k*=p[i])
f[i][j]+=f[i-1][j-k];
}printf("%lld\n",f[m][n]);return 0;
}

P4161 [SCOI2009]游戏的更多相关文章

  1. LG P4161 [SCOI2009]游戏/LG P6280 [USACO20OPEN]Exercise G

    Description(P4161) windy学会了一种游戏. 对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应. 最开始windy把数字按顺序1,2,3,……,N写一排在纸上. 然后再在 ...

  2. luogu P4161 [SCOI2009]游戏

    传送门 我们发现整个大置换中,会由若干形如\((a_1\rightarrow a_2,a_2\rightarrow a_3,...a_{n-1}\rightarrow a_n,a_n\rightarr ...

  3. Luogu P4161 [SCOI2009]游戏 数论+DP

    ywy神犇太巨辣!!一下就明白了!! 题意:求$lcm(a_1,a_2,...,a_k)$的种类,其中$\Sigma\space a_i <=n$,$a_i$相当于环长 此处的$DP$,相当于是 ...

  4. SCOI2009游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1065  Solved: 673[Submit][Status] ...

  5. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  6. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  7. 【BZOJ1025】[SCOI2009]游戏(动态规划)

    [BZOJ1025][SCOI2009]游戏(动态规划) 题面 BZOJ 洛谷 题解 显然就是一个个的置换,那么所谓的行数就是所有循环的大小的\(lcm+1\). 问题等价于把\(n\)拆分成若干个数 ...

  8. bzoj千题计划116:bzoj1025: [SCOI2009]游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...

  9. AC日记——[SCOI2009]游戏 bzoj 1025

    [SCOI2009]游戏 思路: 和为n的几个数最小公倍数有多少种. dp即可: 代码: #include <bits/stdc++.h> using namespace std; #de ...

随机推荐

  1. 【04】AJAX接收服务器返回的数据

    AJAX接收服务器返回的数据 readyState 和 status 属性 readyState 属性保存有 XMLHttpRequest 对象的交互状态,从 0 到 4 变化: 0 :未初始化(还没 ...

  2. [luoguP2672] 推销员(贪心 + 树状数组 + 优先队列)

    传送门 贪心...蒟蒻证明不会... 每一次找最大的即可,找出一次最大的,数列会分为左右两边,左边用stl优先队列维护,右边用树状数组维护.. (线段树超时了....) 代码 #include < ...

  3. Django开发:(3.1)ORM:单表操作

    MVC或者MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库,这极大的减轻了开发人员的工作量,不需 ...

  4. scp远程文件传输

    第一次.提示下载公钥 [root@rhel5 ~]# scp install.log root@192.168.124.129:/tmp The authenticity of host '192.1 ...

  5. ubuntu14.04 配置网络

    ubuntu14.04 配置网络的练习 本文参考的资料: https://blog.csdn.net/liu782726344/article/details/52912797. 感谢作者的分享! 打 ...

  6. python dos2unix

    有时你在windows上创建的文件拿到Linux/unix上运行会出错, 这是因为windows上有些字符如换行符在linux/unix不识别.这种情况下需要用dos2unix这个工具把文件转换成li ...

  7. Cocos2d-x v3.1.1 创建以及编译项目

    1.安装python, 并将安装路径增加系统环境变量中; 2. 执行cocos2d-x根文件夹下的setup.py; 3. 进入cmd, 输入: cocos new 项目名称 -p 包名 -l 语言类 ...

  8. 使用Maven对JAVA程序打包-带主类、带依赖

    使用Maven对JAVA程序打包-带主类.带依赖 http://blog.csdn.net/strongyoung88/article/details/54097830

  9. java入门之——对象转型

    对象的类型转换是我们在编程的时候常常会遇到的,java平台也是如此.比方一些基本类型的数据转型和复合数据的转换. 举例 java语言中主要分为向上转型和向下转型,怎样来了解和掌握这两者转型的关系呢?首 ...

  10. Pivotal Cloud Foundry安全原理解析

    云计算相关的技术差点儿都对传统网络架构和安全规则产生一定的冲击.Pivotal Cloud Foundry(PCF)也不例外,去年8月为了说服专业安全组织允许PaaS部署方案,特意为他们深入讲了下PC ...