P4284 [SHOI2014]概率充电器 dp
这个题题干说的不清楚,一开始我以为只能是旁边紧挨着的传火,导致我一开始根本不知道哪错了。后来,我想到树形dp,但是需要正反考虑,()既要考虑父亲,又要考虑儿子),互相都有影响,所以没太想出来。后来知道两遍就行了,一遍考虑儿子,一遍考虑父亲,然后相乘就行了。
题干:
题目描述 著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品—— 概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决 定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看 吧!” SHOI 概率充电器由n- 条导线连通了n 个充电元件。进行充电时,每条导 线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率 决定。随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行 间接充电。 作为SHOI 公司的忠实客户,你无法抑制自己购买SHOI 产品的冲动。在排 了一个星期的长队之后终于入手了最新型号的SHOI 概率充电器。你迫不及待 地将SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件 个数的期望是多少呢?
输入输出格式
输入格式: 第一行一个整数:n。概率充电器的充电元件个数。充电元件由1-n 编号。 之后的n- 行每行三个整数a, b, p,描述了一根导线连接了编号为a 和b 的 充电元件,通电概率为p%。 第n+ 行n 个整数:qi。表示i 号元件直接充电的概率为qi%。 输出格式: 输出一行一个实数,为能进入充电状态的元件个数的期望,四舍五入到小 数点后6 位小数。
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(register int i = a;i <= n;++i)
#define lv(i,a,n) for(register int i = a;i >= n;--i)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
x = x * + c - '';
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
const int N = 5e5 + ;
struct node
{
int l,r,nxt;
db w;
}a[N << ];
int n,lst[N],len = ;
int fa[N];
db q[N],g[N],f[N],p[N];
void add(int x,int y,db w)
{
a[++len].l = x;
a[len].r = y;
a[len].w = w;
a[len].nxt = lst[x];
lst[x] = len;
}
void dfs(int u,int fat)
{
fa[u] = fat;
f[u] = - q[u];
for(int k = lst[u];k;k = a[k].nxt)
{
int y = a[k].r;
if(y == fat) continue;
dfs(y,u);
f[u] *= (f[y] + ( - f[y]) * ( - a[k].w));
}
}
void solve(int u)
{
if(u == )
{
g[u] = ;
}
for(int k = lst[u];k;k = a[k].nxt)
{
int y = a[k].r;
if(y == fa[u]) continue;
db P = g[u] * f[u] / (f[y] + ( - f[y]) * ( - a[k].w));
g[y] = P + ( - P) * ( - a[k].w);
solve(y);
}
}
int main()
{
read(n);
duke(i,,n - )
{
int x,y,k;
read(x);read(y);read(k);
add(x,y,(db)k / (db));
add(y,x,(db)k / (db));
}
duke(i,,n)
{
int x;
read(x);
q[i] = (db)x / (db);
}
dfs(,);
solve();
duke(i,,n)
{
p[i] = - f[i] * g[i];
}
db ans = ;
duke(i,,n)
{
ans += p[i];
}
printf("%.6lf\n",ans);
return ;
}
P4284 [SHOI2014]概率充电器 dp的更多相关文章
- 洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP
洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP 题目描述 著名的电子产品品牌\(SHOI\) 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米 ...
- 洛谷 P4284 [SHOI2014]概率充电器 解题报告
P4284 [SHOI2014]概率充电器 题目描述 著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- P4284 [SHOI2014]概率充电器
P4284 [SHOI2014]概率充电器 今天上课讲到的题orz,第一次做这种上下搞两次dp的题. g[i]表示i的子树(包括i)不给i充电的概率. f[i]表示i的父亲不给i充电的概率. g[]可 ...
- luogu P4284 [SHOI2014]概率充电器 期望 概率 树形dp
LINK:概率充电器 大概是一个比较水的题目 不过有一些坑点. 根据期望的线性性 可以直接计算每个元件的期望 累和即为答案. 考虑统计每一个元件的概率的话 那么对其有贡献就是儿子 父亲 以及自己. 自 ...
- Bzoj3566/洛谷P4284 [SHOI2014]概率充电器(概率dp)
题面 Bzoj 洛谷 题解 首先考虑从儿子来的贡献: $$ f[u]=\prod_{v \in son[u]}f[v]+(1-f[v])\times(1-dis[i]) $$ 根据容斥原理,就是儿子直 ...
- 【题解】Luogu P4284 [SHOI2014]概率充电器
原题传送门 我们知道,每个电器充电对充电电器数的贡献都是相等的1,所以若第\(i\)个电器有\(p_i\)的概率充电时 \[E=\sum_{i=1}^np_i\] 我们考虑如何求\(p_i\),根据树 ...
- BZOJ 3566: [SHOI2014]概率充电器( 树形dp )
通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...
- BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]
3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...
- BZOJ3566: [SHOI2014]概率充电器 树形+概率dp
3566: [SHOI2014]概率充电器 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1888 Solved: 857[Submit][Stat ...
随机推荐
- linux基础知识汇总
1.如何快速回到上次操作的目录? cd - 2.如何快速回到家目录? 直接cd或者cd ~ 3.怎么回到上一级目录? cd .. 4.什么是相对路径,什么是绝对路径? 相对路径就是相对于当前目录的位置 ...
- [HDU3065]病毒持续侵袭中(AC自动机)
传送门 AC自动机的又一模板,统计每个字符串在文本中的次数. 所以就不需要vis数组了. ——代码 #include <cstdio> #include <cstring> # ...
- 【dp】E. Selling Souvenirs
http://codeforces.com/contest/808/problem/E 题意:给定n个重量为可能1,2,3的纪念品和各自的价值,问在背包总重量不超过m的条件下总价值最大为多少. 其中1 ...
- asp.net 引发类型为“System.OutOfMemoryException”的异常
asp.net 引发类型为“System.OutOfMemoryException”的异常通常发生在IIS进程获取不到内存时. 临时解决方法是: 回收IIS的应用程序池. 如果要比较好的解决办法是: ...
- 匈牙利游戏(codevs 1269)
题目描述 Description Welcome to the Hungary Games! The streets of Budapest form a twisted network of one ...
- BZOJ4580: [Usaco2016 Open]248
n<=248个数字,可以进行这样的操作:将相邻两个相同的数字合并成这个数字+1,求最大能合成多少. f(i,j)--区间i到j能合成的最大值,f(i,j)=max(f(i,k)+1),f(i,k ...
- ACM-ICPC 2018 沈阳赛区网络预赛 G 容斥原理
https://nanti.jisuanke.com/t/31448 解析 易得an=n*n+n O(1)得到前n项和 再删除与m不互素的数 我们用欧拉函数求出m的质因数 枚举其集合的子集 进行 ...
- POJ 1328 Radar Installation【贪心 区间问题】
题目链接: http://poj.org/problem?id=1328 题意: 在x轴上有若干雷达,可以覆盖距离d以内的岛屿. 给定岛屿坐标,问至少需要多少个雷达才能将岛屿全部包含. 分析: 对于每 ...
- hdu 4971
记忆花搜索 dp #include <cstdio> #include <cstdlib> #include <cmath> #include <set& ...
- codeforces 875F(基环外向树)
题意 有一个左边m个点,右边n个点的二分图(n,m<=1e5),左边每个点向右边恰好连两条权值相同的边. 求这个二分图的最优匹配 分析 对于这种二选一问题,即左边的a连向右边的b和c,权值为d, ...