洛谷 P3455 [POI2007]ZAP-Queries || 洛谷P2522,bzoj2301
https://www.luogu.org/problemnew/show/P3455
就是https://www.cnblogs.com/hehe54321/p/9315244.html里面的方法2了,升级版的整除分块,可以两个变量一起搞
预处理莫比乌斯函数的前缀和之后就可以每次$O(\sqrt{n}+\sqrt{m})$回答
那篇题解里面用了一个技巧:${\lfloor}\frac{{\lfloor}\frac{a}{b}{\rfloor}}{c}{\rfloor}={\lfloor}\frac{a}{bc}{\rfloor}$
(当然a,b,c都为正整数)
证了好久。。。
这么证:
设${\lfloor}\frac{a}{bc}{\rfloor}=p$,则p为整数,且$p<=\frac{a}{bc}<p+1$
则$pc<=\frac{a}{b}<pc+c$
而$pc$与$pc+c$都为整数
因此$pc<={\lfloor}\frac{a}{b}{\rfloor}<pc+c$
所以$p<=\frac{{\lfloor}\frac{a}{b}{\rfloor}}{c}<p+1$
所以${\lfloor}\frac{{\lfloor}\frac{a}{b}{\rfloor}}{c}{\rfloor}=p={\lfloor}\frac{a}{bc}{\rfloor}$
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
#define N 50100
ll prime[N+],len,mu[N+],dd[N+];
bool nprime[N+];
ll a,c,n,m,k,ans,ed;
int main()
{
ll i,j,T,TT;
mu[]=;
for(i=;i<=N;i++)
{
if(!nprime[i]) prime[++len]=i,mu[i]=-;
for(j=;j<=len&&i*prime[j]<=N;j++)
{
nprime[i*prime[j]]=;
if(i%prime[j]==) {mu[i*prime[j]]=;break;}
else mu[i*prime[j]]=-mu[i];
}
}
for(i=;i<=N;i++) dd[i]=dd[i-]+mu[i];
scanf("%lld",&T);
for(TT=;TT<=T;TT++)
{
scanf("%lld%lld%lld",&n,&m,&k);n/=k;m/=k;
ans=;
if(n>m) swap(n,m);
for(i=;i<=n;i=j+)
{
j=min(n,min(n/(n/i),m/(m/i)));
ans+=(dd[j]-dd[i-])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return ;
}
https://www.luogu.org/problemnew/show/P2522
https://www.lydsy.com/JudgeOnline/problem.php?id=2301
这题基本一样的,就是加个容斥。。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
#define N 50100
ll prime[N+],len,mu[N+],dd[N+];
bool nprime[N+];
ll a,c,n,m,k;
ll calc(ll n,ll m)
{
if(n==||m==) return ;
ll ans=;
if(n>m) swap(n,m);
n/=k;m/=k;
for(ll i=,j;i<=n;i=j+)
{
j=min(n,min(n/(n/i),m/(m/i)));
ans+=(dd[j]-dd[i-])*(n/i)*(m/i);
}
return ans;
}
int main()
{
ll i,j,T,TT;
mu[]=;
for(i=;i<=N;i++)
{
if(!nprime[i]) prime[++len]=i,mu[i]=-;
for(j=;j<=len&&i*prime[j]<=N;j++)
{
nprime[i*prime[j]]=;
if(i%prime[j]==) {mu[i*prime[j]]=;break;}
else mu[i*prime[j]]=-mu[i];
}
}
for(i=;i<=N;i++) dd[i]=dd[i-]+mu[i];
scanf("%lld",&T);
for(TT=;TT<=T;TT++)
{
scanf("%lld%lld%lld%lld%lld",&a,&n,&c,&m,&k);
printf("%lld\n",calc(n,m)-calc(a-,m)-calc(n,c-)+calc(a-,c-));
}
return ;
}
洛谷 P3455 [POI2007]ZAP-Queries || 洛谷P2522,bzoj2301的更多相关文章
- 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...
- 洛谷 P3455 [POI2007]ZAP-Queries (莫比乌斯函数)
题目链接:P3455 [POI2007]ZAP-Queries 题意 给定 \(a,b,d\),求 \(\sum_{x=1}^{a} \sum_{y=1}^{b}[gcd(x, y) = d]\). ...
- 【刷题】洛谷 P3455 [POI2007]ZAP-Queries
题目描述 Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He ha ...
- 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...
- 洛谷P3455 [POI2007]ZAP-Queries
题目大意: 给定\(n,m,k,\) 求 \[\sum\limits_{x=1}^n\sum\limits_{y=1}^m[gcd(x,y)==k]\] 莫比乌斯反演入门题,先进行一步转化,将每个\( ...
- 洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)
题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\ ...
- [Luogu P3455] [POI2007]ZAP-Queries (莫比乌斯反演 )
题面 传送门:洛咕 Solution 这题比这题不懂简单到哪里去了 好吧,我们来颓柿子. 为了防止重名,以下所有柿子中的\(x\)既是题目中的\(d\) 为了方便讨论,以下柿子均假设\(b>=a ...
- BZOJ 1101: [POI2007]Zap
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2262 Solved: 895[Submit][Status] ...
- [BZOJ1101][POI2007]Zap
[BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...
随机推荐
- 值得收藏的45个Python优质资源(附链接)
REST API:使用 Python,Flask,Flask-RESTful 和 Flask-SQLAlchemy 构建专业的 REST API https://www.udemy.com/rest- ...
- ECMAScript学习笔记
1. ECMAScript不存在块级作用域,因此在循环内部定义的变量,在循环外也是可以访问的 eg: var count =10; fpr(var i=0; i<count; i++){ ale ...
- 【独立开发人员er Cocos2d-x实战 007】使用Cocos2dx UserDefault.xml
这篇博客是因为下述问题产生的 -(代码1): std::string str = FileUtils::getInstance()->getWritablePath(); CCLOG(str.c ...
- POJ2155 Matrix 二维线段树
关键词:线段树 二维线段树维护一个 维护一个X线段的线段树,每个X节点维护一个 维护一个Y线段的线段树. 注意,以下代码没有PushDownX.因为如果要这么做,PushDownX时,由于当前X节点的 ...
- CWnd中PreCreateWindow、PreSubclassWindow、SubclassWindow
原文链接:http://blog.chinaunix.net/uid-14607221-id-2794642.html 1. PreCreateWindow: Called by the framew ...
- bzoj5406: Gift
全程膜拜 码得都要一样了.. 对于这种数列置换的可以理解成多个环,而对于一个大小为d的环把顺序弄对要做d-1次 总起来就是n-环数的次数 加上暴力30pt到手啦 假如题目没有限制,那就是第一类斯特林数 ...
- HDU3081 Marriage Match II —— 传递闭包 + 二分图最大匹配 or 传递闭包 + 二分 + 最大流
题目链接:https://vjudge.net/problem/HDU-3081 Marriage Match II Time Limit: 2000/1000 MS (Java/Others) ...
- POJ2251 Dungeon Master —— BFS
题目链接:http://poj.org/problem?id=2251 Dungeon Master Time Limit: 1000MS Memory Limit: 65536K Total S ...
- 通过Toad工具查看dmp里面的表
今天有同事要查看dmp里面的表是否有数据,虽然可以把单表数据通过exp导出查看,但还是稍显有点麻烦,要花时间. 无意中发现toad工具可以直接查看dmp里面的表数据. 第一步:Database--&g ...
- Android中的Handler,以及用Handler延迟执行
项目中遇到一个情况,先生成文件再上传:但有时候发出指令后上传会不成功,需要再发一次指令方能上传. 猜想是由于文件还没生成就执行「上传」指令了.想到要延时.Android中单纯用currentThrea ...