洛谷 P3455 [POI2007]ZAP-Queries || 洛谷P2522,bzoj2301
https://www.luogu.org/problemnew/show/P3455
就是https://www.cnblogs.com/hehe54321/p/9315244.html里面的方法2了,升级版的整除分块,可以两个变量一起搞
预处理莫比乌斯函数的前缀和之后就可以每次$O(\sqrt{n}+\sqrt{m})$回答
那篇题解里面用了一个技巧:${\lfloor}\frac{{\lfloor}\frac{a}{b}{\rfloor}}{c}{\rfloor}={\lfloor}\frac{a}{bc}{\rfloor}$
(当然a,b,c都为正整数)
证了好久。。。
这么证:
设${\lfloor}\frac{a}{bc}{\rfloor}=p$,则p为整数,且$p<=\frac{a}{bc}<p+1$
则$pc<=\frac{a}{b}<pc+c$
而$pc$与$pc+c$都为整数
因此$pc<={\lfloor}\frac{a}{b}{\rfloor}<pc+c$
所以$p<=\frac{{\lfloor}\frac{a}{b}{\rfloor}}{c}<p+1$
所以${\lfloor}\frac{{\lfloor}\frac{a}{b}{\rfloor}}{c}{\rfloor}=p={\lfloor}\frac{a}{bc}{\rfloor}$
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
#define N 50100
ll prime[N+],len,mu[N+],dd[N+];
bool nprime[N+];
ll a,c,n,m,k,ans,ed;
int main()
{
ll i,j,T,TT;
mu[]=;
for(i=;i<=N;i++)
{
if(!nprime[i]) prime[++len]=i,mu[i]=-;
for(j=;j<=len&&i*prime[j]<=N;j++)
{
nprime[i*prime[j]]=;
if(i%prime[j]==) {mu[i*prime[j]]=;break;}
else mu[i*prime[j]]=-mu[i];
}
}
for(i=;i<=N;i++) dd[i]=dd[i-]+mu[i];
scanf("%lld",&T);
for(TT=;TT<=T;TT++)
{
scanf("%lld%lld%lld",&n,&m,&k);n/=k;m/=k;
ans=;
if(n>m) swap(n,m);
for(i=;i<=n;i=j+)
{
j=min(n,min(n/(n/i),m/(m/i)));
ans+=(dd[j]-dd[i-])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return ;
}
https://www.luogu.org/problemnew/show/P2522
https://www.lydsy.com/JudgeOnline/problem.php?id=2301
这题基本一样的,就是加个容斥。。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
#define N 50100
ll prime[N+],len,mu[N+],dd[N+];
bool nprime[N+];
ll a,c,n,m,k;
ll calc(ll n,ll m)
{
if(n==||m==) return ;
ll ans=;
if(n>m) swap(n,m);
n/=k;m/=k;
for(ll i=,j;i<=n;i=j+)
{
j=min(n,min(n/(n/i),m/(m/i)));
ans+=(dd[j]-dd[i-])*(n/i)*(m/i);
}
return ans;
}
int main()
{
ll i,j,T,TT;
mu[]=;
for(i=;i<=N;i++)
{
if(!nprime[i]) prime[++len]=i,mu[i]=-;
for(j=;j<=len&&i*prime[j]<=N;j++)
{
nprime[i*prime[j]]=;
if(i%prime[j]==) {mu[i*prime[j]]=;break;}
else mu[i*prime[j]]=-mu[i];
}
}
for(i=;i<=N;i++) dd[i]=dd[i-]+mu[i];
scanf("%lld",&T);
for(TT=;TT<=T;TT++)
{
scanf("%lld%lld%lld%lld%lld",&a,&n,&c,&m,&k);
printf("%lld\n",calc(n,m)-calc(a-,m)-calc(n,c-)+calc(a-,c-));
}
return ;
}
洛谷 P3455 [POI2007]ZAP-Queries || 洛谷P2522,bzoj2301的更多相关文章
- 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...
- 洛谷 P3455 [POI2007]ZAP-Queries (莫比乌斯函数)
题目链接:P3455 [POI2007]ZAP-Queries 题意 给定 \(a,b,d\),求 \(\sum_{x=1}^{a} \sum_{y=1}^{b}[gcd(x, y) = d]\). ...
- 【刷题】洛谷 P3455 [POI2007]ZAP-Queries
题目描述 Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He ha ...
- 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...
- 洛谷P3455 [POI2007]ZAP-Queries
题目大意: 给定\(n,m,k,\) 求 \[\sum\limits_{x=1}^n\sum\limits_{y=1}^m[gcd(x,y)==k]\] 莫比乌斯反演入门题,先进行一步转化,将每个\( ...
- 洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)
题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\ ...
- [Luogu P3455] [POI2007]ZAP-Queries (莫比乌斯反演 )
题面 传送门:洛咕 Solution 这题比这题不懂简单到哪里去了 好吧,我们来颓柿子. 为了防止重名,以下所有柿子中的\(x\)既是题目中的\(d\) 为了方便讨论,以下柿子均假设\(b>=a ...
- BZOJ 1101: [POI2007]Zap
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2262 Solved: 895[Submit][Status] ...
- [BZOJ1101][POI2007]Zap
[BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...
随机推荐
- A toolbox to build your own build server
A toolbox to build your own build server LambdaCD - Build Pipelines as Code https://www.lambda.cd/ A ...
- BAPI_PO_CEATE 与PO_1
- JOptionPane常用提示框
//JOptionPane.showMessageDialog(parentComponent, message, title, messageType, icon); JOptionPane.sho ...
- isMemberOf与isKindOf的区别
这两个方法常常会困惑我们,它们有什么区别呢? 定义 首先,我们来看看它们的定义. isKindOfClass: 官方解释:Returns a Boolean value that indicates ...
- redis10---Setbit 的实际应用
Setbit 的实际应用 场景: 1亿个用户, 每个用户 登陆/做任意操作 ,记为 今天活跃,否则记为不活跃 每周评出: 有奖活跃用户: 连续7天活动,每月评,等等. 思路: Userid dt ac ...
- vue中引入字体文件
在用vue来写一官网的时候,想引入外部字体文件,毕竟总感觉他自己的字体有点难看,在这里记录下 1.先下载字体文件所需的.ttf文件 我这里想引入的是华文行楷字体 百度后下载了一个3M多的ttf文件 2 ...
- GPS常见故障
当出现故障时,依据可能原因进行排查. 下表列举典型故障及调试方法 现象 root cause 检查 实验 GPS无法开启/无法搜星 软件配置错误 SW 相关配置(如GPIO等) 录制mobile ...
- react native 中的redux
一.使用redux 的条件: 1.某个组件的状态,需要共享: 2.某个状态需要在任何地方都可以拿到: 3.一个组件需要改变全局状态: 4.一个组件需要改变另一个组件的状态. redux 说明白点, ...
- vfork函数的使用【学习笔记】
#include "apue.h" ; int main(void) { int var; pid_t pid; ; printf("before vfork\r\n&q ...
- 前端如何展示商品属性:SKU多维属性状态判断算法的应用-Vue 实现
由于公司开发了一个电商项目,涉及到前台商品属性的展示,所以百度上找了一下!找到了 周琪力写的一个算法例子,因为作者只有jQuery 实现demo, 自己仿照 demo 实现了一个 vue 的! 周琪力 ...