Baum-Welch算法就是EM算法,所以首先给出EM算法的Q函数

\[\sum_zP(Z|Y,\theta')\log P(Y,Z|\theta)\]

换成HMM里面的记号便于理解

\[Q(\lambda,\lambda') = \sum_zP(I|O,\lambda')\log P(I,O|\lambda)\]

根据状态序列和观测序列的联合分布

\[\begin{align*}
P(O,I|\lambda) &= \sum_IP(O|I,\lambda)P(I|\lambda)\\
&= \pi_{i_1}b_{i_1}(o_1)a_{i_1i_2}b_{i_2}(o_2)\dots a_{i_{T-1}i_T}b_{i_T}(o_T)\\
\end{align*}\]

代入上式后得

\[\begin{align*}
Q(\lambda, \lambda') &= \sum_IP(I|O,\lambda')\log\pi_{i_1}\\ &+ \sum_IP(I|O,\lambda')\log\sum_{t=1}^Tb_{i_t}(o_t) \\ &+ \sum_IP(I|O,\lambda')\log\sum_{t=2}^Ta_{i_{t-1}i_T}
\end{align*}\]

这便是E步,下面看看M步.

看Q函数得第一步, 由于带有约束
\[\sum_i^N\pi_i = 1\]

这个时候就需要请出拉格朗日乘子了

\[\begin{align*}
L &= \sum_IP(I|O,\lambda')\log\pi_1 + \gamma(\sum_{i=1}^N\pi_i -1)\\
&= \sum_{i=1}^NP(O,i_1=i|\lambda')\log\pi_i + \gamma(\sum_{i=1}^N\pi_i -1)\\
\end{align*}\]

令\(\dfrac{\partial L}{\partial\pi_i} = 0\)得到

\[\begin{align*}
P(O, i_1 = i|\lambda') + \gamma \pi_i &= 0\\
P(O, i_1 = i|\lambda') &= -\gamma \pi_i\\
\sum_{i=1}^NP(O, i_1 = i|\lambda') &= -\gamma \sum_{i=1}^N\pi_i\\
\gamma &= -P(O|\lambda')
\end{align*}\]

回代,得到

\[\pi_i = \dfrac{P(O, i_1=i|\lambda')}{P(O|\lambda')}\]

其他得参数同样可以得到

Baum-Welch算法(EM算法)对HMM模型的训练的更多相关文章

  1. 简单易学的机器学习算法——EM算法

    简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系 ...

  2. 详解十大经典机器学习算法——EM算法

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第14篇文章,我们来聊聊大名鼎鼎的EM算法. EM算法的英文全称是Expectation-maximization al ...

  3. NLP —— 图模型(零):EM算法简述及简单示例(三硬币模型)

    最近接触了pLSA模型,该模型需要使用期望最大化(Expectation Maximization)算法求解. 本文简述了以下内容: 为什么需要EM算法 EM算法的推导与流程 EM算法的收敛性定理 使 ...

  4. 极大似然估计、贝叶斯估计、EM算法

    参考文献:http://blog.csdn.net/zouxy09/article/details/8537620 极大似然估计 已知样本满足某种概率分布,但是其中具体的参数不清楚,极大似然估计估计就 ...

  5. EM算法原理以及高斯混合模型实践

    EM算法有很多的应用: 最广泛的就是GMM混合高斯模型.聚类.HMM等等. The EM Algorithm 高斯混合模型(Mixtures of Gaussians)和EM算法 EM算法 求最大似然 ...

  6. EM算法(3):EM算法运用

    目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(3):EM算法运用 1. 内容 EM算法全称为 Exp ...

  7. EM算法(2):GMM训练算法

    目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(2):GMM训练算法 1. 简介 GMM模型全称为Ga ...

  8. 高斯混合模型参数估计的EM算法

    # coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in r ...

  9. 机器学习(七)EM算法、GMM

    一.GMM算法 EM算法实在是难以介绍清楚,因此我们用EM算法的一个特例GMM算法作为引入. 1.GMM算法问题描述 GMM模型称为混合高斯分布,顾名思义,它是由几组分别符合不同参数的高斯分布的数据混 ...

随机推荐

  1. 带你零基础入门redis【一】

    本篇文章介绍在CentOS7系统安装redis,以及redis的简单操作   我们把redis安装在/usr/local目录下.分别执行以下命令 [root@VM_6_102_centos ~]# c ...

  2. Win10微软帐户切换不回Administrator本地帐户的解决方法【亲测】

    在Win10系统中经常会用到微软帐户登录,如应用商店等地方,不过一些用户反馈原来使用Administrator帐户被绑定微软帐户后无法切换回本地帐户,连[改用本地帐户登录]按钮都没有,那么怎么解决呢? ...

  3. sessionStorage 详解,特点,使用技巧,场景

    很早之前久知道sessionStorage ,也学习过,但没有实战使用过 .最近团队遇到一个问题<electronjs中打开新页面sessionStorage丢失>,让我有机会重新来认识一 ...

  4. 会写网页 就会写手机APP #2-- 范例修正 , Hybrid Mobile Apps for ASP.NET Developers (Apache Cordova)

    原文出处:会写网页 就会写手机APP #2-- 范例修正 , Hybrid Mobile Apps for ASP.NET Developers (Apache Cordova) 这是我的文章备份  ...

  5. Windows UEFI 安装策略的一个细节

    在计算机已连接任何带Windows Boot Manager的硬盘的时候,系统自己不会创建EFI分区,而是用之前的

  6. UVA 11988 Broken Keyboard (链表)

    简单题,题目要求显然是很多次插入,所以是链表. 插入两个语句,nxt[i] = nxt[u] 表示 i结点指向u的后继, nxt[u] = i表示把u的后继设成i. 设置一个头结点,指向一个不存在的结 ...

  7. [论文理解]SSD:Single Shot MultiBox Detector

    SSD:Single Shot MultiBox Detector Intro SSD是一套one-stage算法实现目标检测的框架,速度很快,在当时速度超过了yolo,精度也可以达到two-stag ...

  8. 2018.4.21 如何正确快速安装/卸载云服务器Centos7安装GUI图形化界面GNOME桌面环境

    为云服务哦Centos安装图形化界面GNOME .KDE 1.开始前先验证一下能不能上网 ping www.baidu.com 2.接下来开始安装X(X Window System),命令为 yum ...

  9. python_101_类方法

    class Dog(object): n=333 name='小虎子' def __init__(self,name): self.name=name @classmethod def eat(sel ...

  10. 数据库-SQL语法:把一个字段的值设为随机整数

     update test2 set zuig = (cast ( ceiling (rand()*9) as int))