Baum-Welch算法就是EM算法,所以首先给出EM算法的Q函数

\[\sum_zP(Z|Y,\theta')\log P(Y,Z|\theta)\]

换成HMM里面的记号便于理解

\[Q(\lambda,\lambda') = \sum_zP(I|O,\lambda')\log P(I,O|\lambda)\]

根据状态序列和观测序列的联合分布

\[\begin{align*}
P(O,I|\lambda) &= \sum_IP(O|I,\lambda)P(I|\lambda)\\
&= \pi_{i_1}b_{i_1}(o_1)a_{i_1i_2}b_{i_2}(o_2)\dots a_{i_{T-1}i_T}b_{i_T}(o_T)\\
\end{align*}\]

代入上式后得

\[\begin{align*}
Q(\lambda, \lambda') &= \sum_IP(I|O,\lambda')\log\pi_{i_1}\\ &+ \sum_IP(I|O,\lambda')\log\sum_{t=1}^Tb_{i_t}(o_t) \\ &+ \sum_IP(I|O,\lambda')\log\sum_{t=2}^Ta_{i_{t-1}i_T}
\end{align*}\]

这便是E步,下面看看M步.

看Q函数得第一步, 由于带有约束
\[\sum_i^N\pi_i = 1\]

这个时候就需要请出拉格朗日乘子了

\[\begin{align*}
L &= \sum_IP(I|O,\lambda')\log\pi_1 + \gamma(\sum_{i=1}^N\pi_i -1)\\
&= \sum_{i=1}^NP(O,i_1=i|\lambda')\log\pi_i + \gamma(\sum_{i=1}^N\pi_i -1)\\
\end{align*}\]

令\(\dfrac{\partial L}{\partial\pi_i} = 0\)得到

\[\begin{align*}
P(O, i_1 = i|\lambda') + \gamma \pi_i &= 0\\
P(O, i_1 = i|\lambda') &= -\gamma \pi_i\\
\sum_{i=1}^NP(O, i_1 = i|\lambda') &= -\gamma \sum_{i=1}^N\pi_i\\
\gamma &= -P(O|\lambda')
\end{align*}\]

回代,得到

\[\pi_i = \dfrac{P(O, i_1=i|\lambda')}{P(O|\lambda')}\]

其他得参数同样可以得到

Baum-Welch算法(EM算法)对HMM模型的训练的更多相关文章

  1. 简单易学的机器学习算法——EM算法

    简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系 ...

  2. 详解十大经典机器学习算法——EM算法

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第14篇文章,我们来聊聊大名鼎鼎的EM算法. EM算法的英文全称是Expectation-maximization al ...

  3. NLP —— 图模型(零):EM算法简述及简单示例(三硬币模型)

    最近接触了pLSA模型,该模型需要使用期望最大化(Expectation Maximization)算法求解. 本文简述了以下内容: 为什么需要EM算法 EM算法的推导与流程 EM算法的收敛性定理 使 ...

  4. 极大似然估计、贝叶斯估计、EM算法

    参考文献:http://blog.csdn.net/zouxy09/article/details/8537620 极大似然估计 已知样本满足某种概率分布,但是其中具体的参数不清楚,极大似然估计估计就 ...

  5. EM算法原理以及高斯混合模型实践

    EM算法有很多的应用: 最广泛的就是GMM混合高斯模型.聚类.HMM等等. The EM Algorithm 高斯混合模型(Mixtures of Gaussians)和EM算法 EM算法 求最大似然 ...

  6. EM算法(3):EM算法运用

    目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(3):EM算法运用 1. 内容 EM算法全称为 Exp ...

  7. EM算法(2):GMM训练算法

    目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(2):GMM训练算法 1. 简介 GMM模型全称为Ga ...

  8. 高斯混合模型参数估计的EM算法

    # coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in r ...

  9. 机器学习(七)EM算法、GMM

    一.GMM算法 EM算法实在是难以介绍清楚,因此我们用EM算法的一个特例GMM算法作为引入. 1.GMM算法问题描述 GMM模型称为混合高斯分布,顾名思义,它是由几组分别符合不同参数的高斯分布的数据混 ...

随机推荐

  1. 织梦dedecms手机版上下篇链接错误的解决方法

    打开 \include\arc.archives.class.php 1. 找到 $this->PreNext['pre'] = "上一篇:<a href='$mlink'> ...

  2. 【虚拟机-网络IP】保留正在使用的 VIP

    本文包含以下内容 适用场景 操作步骤 保留IP的费用 适用场景 我们希望云服务有一个固定的 IP,即使虚拟机以 deallocated 的方式关闭. 用户忘记先保留 VIP 而直接完成了部署. 希望不 ...

  3. 洛谷 P2176 [USACO14FEB]路障Roadblock

    题目描述 每天早晨,FJ从家中穿过农场走到牛棚.农场由 N 块农田组成,农田通过 M 条双向道路连接,每条路有一定长度.FJ 的房子在 1 号田,牛棚在 N 号田.没有两块田被多条道路连接,以适当的路 ...

  4. Java的三大特性之继承

    此处我会分为这几个部分来理解继承是怎么样的: 1.区分封装.继承和多态 2.区分限定词的范围 3.区分隐藏.覆盖.重载 4.继承的理解 5.一道面试题的原型 --------------------- ...

  5. 《学习CSS布局》学习笔记

    近几天做了一个小的企业展示网站.虽然页面是在模板的基础上改的,但改的多了不熟悉CSS也很麻烦.正好我看到了学习CSS布局这个网站,于是补习了一下CSS知识. CSS的显示 CSS的元素分为两类:块级元 ...

  6. HDU 5094 Maze (状压)

    加一个维度,钥匙的状态,状压一下.n很小,钥匙也只有10个,bfs就好了. 忘了数组初始化.以后坚决不犯这种低级错误. #include<cstdio> #include<queue ...

  7. Spark 集群环境搭建

    思路: ①先在主机s0上安装Scala和Spark,然后复制到其它两台主机s1.s2 ②分别配置三台主机环境变量,并使用source命令使之立即生效 主机映射信息如下: 192.168.32.100 ...

  8. Paper: TranE

    论文标题:Translating Embeddings for Modeling Multi-relational Data 标题翻译:多元关系数据翻译嵌入建模 摘要: 考虑多元关系数据的实体和关系在 ...

  9. JavaScript深入浅出第2课:函数是一等公民是什么意思呢?

    摘要: 听起来很炫酷的一等公民是啥? <JavaScript深入浅出>系列: JavaScript深入浅出第1课:箭头函数中的this究竟是什么鬼? JavaScript深入浅出第2课:函 ...

  10. java基础—泛型

    一.体验泛型 JDK1.5之前的集合类中存在的问题——可以往集合中加入任意类型的对象,例如下面代码: 1 package cn.gacl.generic.summary; 2 3 import jav ...