题意:有一棵n个点的有根树,每条边上有一个边权。给定P,从i跳到它的祖先j的费用是距离的平方+P,问所有点中到根节点1的总花费最大值

n<=1e5,p<=1e6,w<=1e2

思路:对于根节点到每个点i的路径上是一个下凸壳,是经典的斜率优化

考虑在dfs时维护这个下凸壳,在斜率优化加入与删除点时记录下时间戳和操作的类型,dfs结束时恢复即可

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
typedef long long ll;
using namespace std;
#define N 210000
#define oo 10000000
#define MOD 1000000007 struct node
{
int t,x,y;
}stk[N]; ll dp[N],s[N],P;
int dep[N],head[N],vet[N],nxt[N],len[N],q[N],flag[N],n,top,tot,tim,t,w; int add(int a,int b,int c)
{
nxt[++tot]=head[a];
vet[tot]=b;
len[tot]=c;
head[a]=tot;
} ll sqr(ll x)
{
return x*x;
} ll calc(int i,int j)
{
return dp[j]+sqr(s[i]-s[j])+P;
} int cmp(int x,int y,int z)
{
ll x1=dp[x]-dp[y]+sqr(s[x])-sqr(s[y]);
ll y1=s[x]-s[y];
ll x2=dp[y]-dp[z]+sqr(s[y])-sqr(s[z]);
ll y2=s[y]-s[z];
return x1*y2>=x2*y1;
} void dfs(int u)
{
tim++;
flag[u]=;
if(u==)
{
t=; w=; dp[u]=-P; q[]=;
}
else
{
while(t<w&&calc(u,q[t])>=calc(u,q[t+]))
{
stk[++top].t=tim; stk[top].x=; stk[top].y=q[t];
t++;
}
dp[u]=calc(u,q[t]);
while(t<w&&cmp(q[w-],q[w],u))
{
stk[++top].t=tim; stk[top].x=; stk[top].y=q[w];
w--;
}
q[++w]=u;
stk[++top].t=tim; stk[top].x=;
} int tmp=tim;
int e=head[u];
while(e)
{
int v=vet[e];
if(!flag[v])
{
s[v]=s[u]+len[e];
dfs(v);
}
e=nxt[e];
}
while(stk[top].t==tmp)
{
if(stk[top].x==) q[--t]=stk[top].y;
if(stk[top].x==) q[++w]=stk[top].y;
if(stk[top].x==) w--;
top--;
}
} int main()
{
int cas;
scanf("%d",&cas);
while(cas--)
{
int n;
scanf("%d%d",&n,&P);
s[]=;
tot=;
for(int i=;i<=n;i++) head[i]=flag[i]=;
for(int i=;i<=n-;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
tim=;
t=; w=; top=;
dfs();
ll ans=;
for(int i=;i<=n;i++) ans=max(ans,dp[i]);
printf("%I64d\n",ans);
}
return ;
}

【HDOJ5956】The Elder(树形DP,斜率优化)的更多相关文章

  1. P3994 高速公路 树形DP+斜率优化+二分

    $ \color{#0066ff}{ 题目描述 }$ C国拥有一张四通八达的高速公路网树,其中有n个城市,城市之间由一共n-1条高速公路连接.除了首都1号城市,每个城市都有一家本地的客运公司,可以发车 ...

  2. Codeforces 1179D 树形DP 斜率优化

    题意:给你一颗树,你可以在树上添加一条边,问添加一条边之后的简单路径最多有多少条?简单路径是指路径中的点只没有重复. 思路:添加一条边之后,树变成了基环树.容易发现,以基环上的点为根的子树的点中的简单 ...

  3. 洛谷P3994 Highway(树形DP+斜率优化+可持久化线段树/二分)

    有点类似NOI2014购票 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ 这个显然是可以斜率优化的... $\frac {f(j)-f(k)}{dep_j ...

  4. bzoj3672: [Noi2014]购票(树形DP+斜率优化+可持久化凸包)

    这题的加强版,多了一个$l_i$的限制,少了一个$p_i$的单调性,难了好多... 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ $\frac {f(j) ...

  5. 【BZOJ-4518】征途 DP + 斜率优化

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 230  Solved: 156[Submit][Status][ ...

  6. 【BZOJ-3437】小P的牧场 DP + 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 705  Solved: 404[Submit][Status][Discuss ...

  7. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

  8. 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...

  9. BZOJ 1096: [ZJOI2007]仓库建设(DP+斜率优化)

    [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在 ...

  10. 学渣乱搞系列之dp斜率优化

    学渣乱搞系列之dp斜率优化 By 狂徒归来 貌似dp的斜率优化一直很难搞啊,尤其是像我这种数学很挫的学渣,压根不懂什么凸包,什么上凸下凸的,哎...说多了都是泪,跟wdd讨论了下,得出一些结论.本文很 ...

随机推荐

  1. Base64及其Python实现

    1. 什么是Base64 Base64是一种基于64个可打印字符来表示二进制数据的表示方法 Base64是一种编码方式,提及编码方式,必然有其对应的字符集合.在Base64编码中,相互映射的两个集合是 ...

  2. mysql密码正确却提示错误, 不输入密码反而能登录

    今天部署阿里云服务器, 发现之前可以连接的mysql服务器突然连接不上了, 密码我确认是正确的,但登录时就是显示密码错误, 很崩溃, 差点气得我就想重装mysql了. 好在经过几番苦寻找到了以下能解决 ...

  3. vscode运行C/C++程序及配置

    安装vscdoe,安装tdm-gcc-64编译器,这样可以自动把mingw的目录添加到环境变量中,其实安装其他编译器本版都可以,只要手动添加环境变量即可.平台win10-64位.此文参考了哔哩哔哩的配 ...

  4. Cube HDU - 1220(思维)

    Cowl is good at solving math problems. One day a friend asked him such a question: You are given a c ...

  5. 2015-2016 Northwestern European Regional Contest (NWERC 2015)

    训练时间:2019-04-05 一场读错三个题,队友恨不得手刃了我这个坑B. A I J 简单,不写了. C - Cleaning Pipes (Gym - 101485C) 对于有公共点的管道建边, ...

  6. P1616 疯狂的采药

    P1616 疯狂的采药 题目背景 此题为NOIP2005普及组第三题的疯狂版. 此题为纪念LiYuxiang而生. 题目描述 LiYuxiang是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师.为 ...

  7. vue/vux编译时出现 unexpected token <11:0-485>

    最近开发Vux项目,一直使用VS Code开发工具,可以格式化里面的<script>代码的: 但是今天突然无法格式化代码,而且编译报错.主要提示类似:unexpected token  & ...

  8. C#编程:正则表达式验证身份证校验码-10

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  9. ECMAScript5.1

    http://lzw.me/pages/ecmascript/  ECMAScript5.1中文版 https://msdn.microsoft.com/zh-cn/library/dn656907. ...

  10. Python-S9——Day109-Git及Redis

    1.初识Git: 2.Git版本控制之stash和branch: 1.初识Git: 1.1 Git是什么? Git是一个用于帮助用户实现“版本控制”的软件: 1.2 Git安装: GIt官网:http ...