题意:有一棵n个点的有根树,每条边上有一个边权。给定P,从i跳到它的祖先j的费用是距离的平方+P,问所有点中到根节点1的总花费最大值

n<=1e5,p<=1e6,w<=1e2

思路:对于根节点到每个点i的路径上是一个下凸壳,是经典的斜率优化

考虑在dfs时维护这个下凸壳,在斜率优化加入与删除点时记录下时间戳和操作的类型,dfs结束时恢复即可

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
typedef long long ll;
using namespace std;
#define N 210000
#define oo 10000000
#define MOD 1000000007 struct node
{
int t,x,y;
}stk[N]; ll dp[N],s[N],P;
int dep[N],head[N],vet[N],nxt[N],len[N],q[N],flag[N],n,top,tot,tim,t,w; int add(int a,int b,int c)
{
nxt[++tot]=head[a];
vet[tot]=b;
len[tot]=c;
head[a]=tot;
} ll sqr(ll x)
{
return x*x;
} ll calc(int i,int j)
{
return dp[j]+sqr(s[i]-s[j])+P;
} int cmp(int x,int y,int z)
{
ll x1=dp[x]-dp[y]+sqr(s[x])-sqr(s[y]);
ll y1=s[x]-s[y];
ll x2=dp[y]-dp[z]+sqr(s[y])-sqr(s[z]);
ll y2=s[y]-s[z];
return x1*y2>=x2*y1;
} void dfs(int u)
{
tim++;
flag[u]=;
if(u==)
{
t=; w=; dp[u]=-P; q[]=;
}
else
{
while(t<w&&calc(u,q[t])>=calc(u,q[t+]))
{
stk[++top].t=tim; stk[top].x=; stk[top].y=q[t];
t++;
}
dp[u]=calc(u,q[t]);
while(t<w&&cmp(q[w-],q[w],u))
{
stk[++top].t=tim; stk[top].x=; stk[top].y=q[w];
w--;
}
q[++w]=u;
stk[++top].t=tim; stk[top].x=;
} int tmp=tim;
int e=head[u];
while(e)
{
int v=vet[e];
if(!flag[v])
{
s[v]=s[u]+len[e];
dfs(v);
}
e=nxt[e];
}
while(stk[top].t==tmp)
{
if(stk[top].x==) q[--t]=stk[top].y;
if(stk[top].x==) q[++w]=stk[top].y;
if(stk[top].x==) w--;
top--;
}
} int main()
{
int cas;
scanf("%d",&cas);
while(cas--)
{
int n;
scanf("%d%d",&n,&P);
s[]=;
tot=;
for(int i=;i<=n;i++) head[i]=flag[i]=;
for(int i=;i<=n-;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
tim=;
t=; w=; top=;
dfs();
ll ans=;
for(int i=;i<=n;i++) ans=max(ans,dp[i]);
printf("%I64d\n",ans);
}
return ;
}

【HDOJ5956】The Elder(树形DP,斜率优化)的更多相关文章

  1. P3994 高速公路 树形DP+斜率优化+二分

    $ \color{#0066ff}{ 题目描述 }$ C国拥有一张四通八达的高速公路网树,其中有n个城市,城市之间由一共n-1条高速公路连接.除了首都1号城市,每个城市都有一家本地的客运公司,可以发车 ...

  2. Codeforces 1179D 树形DP 斜率优化

    题意:给你一颗树,你可以在树上添加一条边,问添加一条边之后的简单路径最多有多少条?简单路径是指路径中的点只没有重复. 思路:添加一条边之后,树变成了基环树.容易发现,以基环上的点为根的子树的点中的简单 ...

  3. 洛谷P3994 Highway(树形DP+斜率优化+可持久化线段树/二分)

    有点类似NOI2014购票 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ 这个显然是可以斜率优化的... $\frac {f(j)-f(k)}{dep_j ...

  4. bzoj3672: [Noi2014]购票(树形DP+斜率优化+可持久化凸包)

    这题的加强版,多了一个$l_i$的限制,少了一个$p_i$的单调性,难了好多... 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ $\frac {f(j) ...

  5. 【BZOJ-4518】征途 DP + 斜率优化

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 230  Solved: 156[Submit][Status][ ...

  6. 【BZOJ-3437】小P的牧场 DP + 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 705  Solved: 404[Submit][Status][Discuss ...

  7. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

  8. 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...

  9. BZOJ 1096: [ZJOI2007]仓库建设(DP+斜率优化)

    [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在 ...

  10. 学渣乱搞系列之dp斜率优化

    学渣乱搞系列之dp斜率优化 By 狂徒归来 貌似dp的斜率优化一直很难搞啊,尤其是像我这种数学很挫的学渣,压根不懂什么凸包,什么上凸下凸的,哎...说多了都是泪,跟wdd讨论了下,得出一些结论.本文很 ...

随机推荐

  1. 同时启动多个tomcat的配置信息

    同时启动多个tomcat的配置信息 下面把该配置文件中各端口的含义说明下. <Server port="8005" shutdown="SHUTDOWN" ...

  2. Yii 2.x html 代码压缩

    <?php namespace Pangu\web; use yii\base\Component; /** * html格式响应内容格式化 * @author zhouzhian * */ c ...

  3. 22.VUE学习之-replice删除当前评论条数

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. django_数据库操作—增、删、改、查

    增加 增加数据有两种方法 1> sava >>> from datetime import date >>> book = BookInfo( btitle= ...

  5. 如何将emoji表情存放到mysql数据库中

    昨晚在爬取猫眼电影评论时在将评论信息插入到数据库中时出现问题,总是在插入一条数据时就会报错: 看着应该时字符编码的问题,比如新建的数据库新建的表,默认字符编码是:Latin1, 这种编码是无法插入中文 ...

  6. 通过uboot传参设置mtd分区流程源码分析

    因为公司同事反映他使用的开板无法将根目录下的ip_work目mounth成功,由于本人当时没有去现场查看问题,只是象征性的询问内核是否创建了/dev/mtdblock5设备节点,因为该开发板默认是挂载 ...

  7. Installing Apps Kattis - installingapps (贪心 + 背包)

    Installing Apps Kattis - installingapps Sandra recently bought her first smart phone. One of her fri ...

  8. Keepalivaed +Nginx proxy 高可用架构方案与实施过程细节

    1.开源产品介绍 1)CMS介绍 官方网站http://www.dedecms.com/,是一个网站应用系统构建平台,也是一个强大的网站内容管理系统,既可以用来构建复杂的体系的企业信息门户或者电子商务 ...

  9. Sql日期时间格式转换(转 子夜.)

    sql server2000中使用convert来取得datetime数据类型样式(全) 日期数据格式的处理,两个示例: CONVERT(varchar(16), 时间一, 20) 结果:2007-0 ...

  10. MySQL之Schema与数据类型优化

    选择优化的数据类型 MySQL支持的数据类型非常多,选择正确的数据类型对于获得高性能至关重要.不管存储哪种类型的数据,下面几个简单的原则都有助于做出更好的选择: 更小的通常更好一般情况下,应该尽量使用 ...