51Nod 1627 瞬间移动 —— 组合数学
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1627
有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子能直接瞬移到蓝色格子),求到第n行第m列的格子有几种方案,答案对1000000007取模。

单组测试数据。
两个整数n,m(2<=n,m<=100000)
一个整数表示答案。
4 5
10
题解:
1.如果去除掉起点和终点,那么就是对中间的矩形进行统计。则首先 n -= 2, m -= 2。
2. 可知里边的矩形最多只能有 min(n,m)个足迹,假设m = min(n,m),即最多只能有m个足迹。
3.根据以上两点,可以枚举矩形里足迹的个数i,然后再为这i个足迹分配横、纵坐标,总共有 C(n,i)*C(m,i)种情况,则最终答案为:∑C(n,i)*C(m,i) , 0<=i<=m 。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXM = 1e5+;
const int MAXN = 2e5+; LL qpow(LL x, LL y)
{
LL s = ;
while(y)
{
if(y&) s = (s*x)%MOD;
x = (x*x)%MOD;
y >>= ;
}
return s;
} LL A[MAXN], inv[MAXN];
LL C(LL n, LL m)
{
if(n<m) return ;
return (((A[n]*inv[n-m])%MOD)*inv[m])%MOD;
} void init()
{
A[] = inv[] = ;
for(int i = ; i<MAXN; i++)
{
A[i] = i*A[i-]%MOD;
inv[i] = qpow(A[i], MOD-);
}
} int main()
{
init();
LL n, m;
while(scanf("%lld%lld",&n,&m)!=EOF)
{
n -= ; m -= ; //去掉起始点和终点,只对里边的矩形进行统计
if(n<m) swap(n,m);
LL ans = ;
for(int i = ; i<=m; i++) //里边的矩形最多只能有min(n,m)个“足迹”,即最多只能走min(n,m)+1步
ans = (ans+C(m,i)*C(n,i)%MOD)%MOD; //如果里边有i个足迹,则为这i个足迹选择横坐标、纵坐标
printf("%lld\n", ans);
}
}
51Nod 1627 瞬间移动 —— 组合数学的更多相关文章
- 51nod 1627 瞬间移动(组合数学)
传送门 解题思路 因为每次横纵坐标至少\(+1\),所以可以枚举走的步数,枚举走的步数\(i\)后剩下的就是把\(n-1\)与\(m-1\)划分成\(i\)个有序正整数相加,所以用隔板法,\(ans= ...
- 51 Nod 1627瞬间移动(插板法!)
1627 瞬间移动 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右 ...
- Problem 2238 Daxia & Wzc's problem 1627 瞬间移动
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1627 http://acm.fzu.edu.cn/problem.php ...
- 2016"百度之星" - 初赛(Astar Round2B)1003 瞬间移动 组合数学+逆元
瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/ ...
- 51nod1627 瞬间移动
打表可以看出来是组合数...妈呀为什么弄成n+m-4,n-1,m-3就错啊... //打表可以看出来是组合数...妈呀为什么弄成n+m-4,n-1,m-3就错啊... #include<cstd ...
- 51Nod 1016 水仙花数 V2(组合数学,枚举打表法)
1016 水仙花数 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 水仙花数是指一个 n 位数 ( n≥3 ) ...
- 51nod 1189 算术基本定理/组合数学
www.51nod.com/onlineJudge/questionCode.html#!problemId=1189 1189 阶乘分数 题目来源: Spoj 基准时间限制:1 秒 空间限制:131 ...
- 51nod 1119 机器人走方格 V2 【组合数学】
挺水的但是我好久没写组合数了- 用这样一个思想,在1~m列中,考虑每一列上升几格,相当于把n-1个苹果放进m个篮子里,可以为空,问有几种方案. 这个就是一个组合数学经典问题了,考虑n个苹果放进m个篮子 ...
- 51nod 1253:Kundu and Tree(组合数学)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1253 所有的三元组的可能情况数有ans0=C(n,3).然后 ...
随机推荐
- Windows下批处理命令启动项目bat脚本
文件env.cfg #server name SERVER_NAME=ActivitiService #JDK Home JDK_HOME= #Main MAIN_CLASS=com.nbtv.com ...
- json-path解析json方便可靠
JsonPath is to JSON what XPATH is to XML, a simple way to extract parts of a given document. JsonPat ...
- 2.配置通过数据库接收SaltStack批量管理日志
2.配置通过数据库接收SaltStack批量管理日志 2016-07-04 10:02:52来源:oschina作者:eddy_linux人点击 默认情况下发送给salt minion的命令执 ...
- ThinkPHP第一课 环境搭建
第一课 环境搭建 1.说明: ThinkPHP是一个开源的国产PHP框架,是为了简化企业级应用开发和敏捷WEB应用开发而诞生的. 最早诞生于2006年初.原名FCS.2007年元旦正式更名为Think ...
- ORACLE物化视图具体解释
一.物化的一般使用方法物化视图是一种特殊的物理表,"物化"(Materialized)视图是相对普通视图而言的.普通视图是虚拟表.应用的局限性大,不论什么对视图的查询.oracle ...
- HDU BestCoder Round #1 1002 项目管理
项目管理 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- java wait 和notify的用法
package com.test; public class OutputThread implements Runnable { private int num; private Object lo ...
- java利用爬虫技术抓取(省、市(区号\邮编)、县)数据
近期项目须要用到 城市的地址信息,但从网上下载的xml数据没有几个是最新的地址信息.....数据太老,导致有些地区不全.所以才想到天气预报官网特定有最新最全的数据.贴出代码,希望能给有相同困惑的朋友. ...
- 【TensorFlow-windows】(七) CNN之VGG-net的测试
主要内容: 1.CNN之VGG-net的测试 2.该实现中的函数总结 平台: 1.windows 10 64位 2.Anaconda3-4.2.0-Windows-x86_64.exe (当时TF还不 ...
- strpos与strstr之间的区别
string strstr(string haystack,string needle) 返回haystack中从第一 个needle开头到haystack末尾的字符串. 如果未找到needle 返回 ...