P1368 均分纸牌(加强版)

题目描述

有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,纸牌总数必为 N 的倍数。可以在任一堆上取1张纸牌,然后移动。

移牌规则为:在编号为 1 堆上取的纸牌,能移到编号为 2和N 的堆上;在编号为 N 的堆上取的纸牌,能移到编号为 N-1和1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

现在要求找出一种移动方法,使每堆上纸牌数都一样多且牌的移动次数尽量少。

输入输出格式

输入格式:

第一行一个整数n

第二行为n个空格分开的正整数,为n堆纸牌的牌数。

输出格式:

只有一个数,为最少的移动次数。

输入输出样例

输入样例#1:

4
1 2 5 4
输出样例#1:

4

说明

对样例的说明:

①第4堆移动1张牌至第1堆

②第3堆移动1张牌至第2堆

③第3堆移动1张牌至第2堆

④第2堆移动1张牌至第1堆

此时移动次数为4最小

【数据范围】

对于40%的数据,n<=10000

对于100%的数据,n<=1000000,所有纸牌数总和在2147483647内

/*
设平均数为xba 不妨设a1给了an x1 张纸牌(k可正可负),a2给了a1 x2张纸牌, a3给了a2 x3 张纸牌……an给了a(n - 1) xn张纸牌,不难发现以下方程: xba = a1 - x1 + x2
xba = a2 - x2 + x3
xba = a3 - x3 + x4
xba = a4 - x4 + x5
......
xba = a(n - 1) - x(n - 1) + xn
xba = an - xn + x1 我们考虑最终结果,应该是
|x1| + |x2| + |x3| + .... + |xn| 换元法,得到
ans = |x1| + |xba - a1 + x1| + |2xba -a1 - a2 + x1| + |3xba -a1 - a2 - a3 + x1| + ..... + |(n - 1)xba - Σai,i <= n - 1|转换为一次函数带绝对值的最值问题 数形结合思想,看做是数轴上点的距离。
中位数时距离和最小。
*/
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define maxn 1000010
#define INF 0x3f3f3f3f
long long a[maxn],sum,f[maxn],xba,n,k,ans;
int main(){
scanf("%d",&n);
for(long long i=;i<=n;i++){
cin>>a[i];
sum+=a[i];
}
xba=sum/n;
f[]=;
for(long long i=;i<=n;i++)
f[i]=f[i-]+xba-a[i-];
sort(f+,f+n+);
k=f[n/+];
for(long long i=;i<=n;i++)
ans+=abs(k-f[i]);
cout<<ans;
return ;
}

洛谷P1368 均分纸牌(加强版)的更多相关文章

  1. 洛谷P1368 均分纸牌(加强版) [2017年6月计划 数论14]

    P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...

  2. 洛谷P1031 均分纸牌

    P1031 均分纸牌 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌 ...

  3. 洛谷 P1031 均分纸牌

    P1031 均分纸牌 这道题告诉我们,对于实在想不出算法的题,可以大胆按照直觉用贪心,而且在考试中永远不要试着去证明贪心算法,因为非常难证,会浪费大量时间. (这就是你们都不去证的理由??) 这道题贪 ...

  4. 洛谷 P1031 均分纸牌 Label:续命模拟QAQ

    题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...

  5. 洛谷 P1031 均分纸牌【交叉模拟】

    题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...

  6. [NOIP2002] 提高组 洛谷P1031 均分纸牌

    题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...

  7. 洛谷——P1031 均分纸牌

    https://www.luogu.org/problem/show?pid=1031#sub 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以 ...

  8. (Java实现) 洛谷 P1031 均分纸牌

    题目描述 有NN堆纸牌,编号分别为 1,2,-,N1,2,-,N.每堆上有若干张,但纸牌总数必为NN的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为11堆上取的纸牌,只能移到编号为 ...

  9. 最小表示法模板(洛谷P1368 工艺)(最小表示法)

    洛谷题目传送门 最小表示是指一个字符串通过循环位移变换(第一个移到最后一个)所能得到的字典序最小的字符串. 因为是环状的,所以肯定要先转化为序列,把原串倍长. 设决策点为一个表示法的开头.比较两个决策 ...

随机推荐

  1. tensorflow:typeerror:‘noneType’ object is not callable

    程序运行报错 typeerror: ‘noneType’ object is not callable 解决方法:删除缓存文件,再次运行没有错误 删除__pycache__文件夹

  2. B. Drazil and His Happy Friends

    这是 Codeforces Round #292 (Div. 2)的一道题,原题在这里,题意就是: 小明有n个男同学(编号为 0 ~ n-1)和m个女同学 (编号为 0 ~ m-1),小明要安排男女之 ...

  3. spring-boot4代码

    App.java package com.kfit; import org.springframework.boot.SpringApplication; import org.springframe ...

  4. Linux CentOS系统上安装Eclipse

    Linux CentOS系统上安装Eclipse 1. 下载Eclipse软件 下载网址:http://www.eclipse.org/downloads/packages/release/Juno/ ...

  5. SpringCloud与Dubbo区别

    为什么放弃Dubbo 使用SpringCloud? 相同点:SpringCloud 和Dubbo可以实现RPC远程调用框架,可以实现服务治理. 不同点: SpringCloud是一套目前比较网站微服务 ...

  6. python读取文件的几种方式

    http://www.cnblogs.com/nkwy2012/p/6023710.html

  7. jQuery Tab选项卡切换代码

    jQuery Tab选项卡切换代码是一款简单的jquery tab选项卡切换网页特效代码样式,可以修改tab选项卡相关样式. 代码下载:http://www.huiyi8.com/sc/10863.h ...

  8. laravel基础课程---15、分页及验证码(lavarel分页效果如何实现)

    laravel基础课程---15.分页及验证码(lavarel分页效果如何实现) 一.总结 一句话总结: 数据库的paginate方法:$data=\DB::table("user" ...

  9. 分享知识-快乐自己:spring_Boot 中文返回给浏览器乱码 解析成问号?? fastJson jackJson

    心路历程: 在Controller中return 对象的时候,对象中的属性值中文部分在浏览器中 显示为问号?? 然后结果是这样的:?? 尝试排查原因: 中文乱码常有以下三种: 1.request.re ...

  10. the art of seo(chapter eleven)

    Tracking Results and Measuring Success goal -> driver ***Why Measuring Success Is Essential to th ...