1043 方格取数

2000年NOIP全国联赛提高组

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 钻石 Diamond
 
 
 
题目描述 Description

设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。如下图所示(见样例):

某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。

此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。

输入描述 Input Description

输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。

输出描述 Output Description

只需输出一个整数,表示2条路径上取得的最大的和。

样例输入 Sample Input

8

2  3  13

2  6   6

3  5   7

4  4  14

5  2  21

5  6   4

6 3  15

7 2  14

0 0  0

样例输出 Sample Output

67

数据范围及提示 Data Size & Hint
如描述

分类标签 Tags 点此展开

 
 
 
 代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,x,y,z;
int main()
{
    scanf("%d",&n);
    ][n+],f[n+][n+][n+][n+];
    memset(a,,sizeof(a));
    memset(f,,sizeof(f));
    )
    {
        scanf("%d%d%d",&x,&y,&z);
        &&y==&&z==) break;
        else
        {
            a[x][y]=z;
        }
    }
    ;i<=n;i++)
      ;j<=n;j++)
        ;k<=n;k++)
          ;l<=n;l++)
           {
               if(i==k&&j==l)
                 f[i][j][k][l]=a[i][j]+max(max(f[i][j-][k][l-],f[i-][j][k-][l]),max(f[i][j-][k-][l],f[i-][j][k][l-]));
               ][k][l-],f[i-][j][k-][l]),max(f[i][j-][k-][l],f[i-][j][k][l-]));
           }
    printf("%d",f[n][n][n][n]);
    ;
}

思路

因为是取两次,所以有的同学会想到先取一遍最大值,把取过的附值为0,然后再取一遍。

但这时怎样标记那个点取过是非常困难的,所以我们自然而然的想到可以设一个4维DP f[i][j][k][l] ,

i代表第一次取值的横坐标,j代表第一次取值的纵坐标,k代表第二次取值的横坐标,

l代表第二次取值的纵坐标,然后一个4重循环,列出动态转移方程。

分成两种情况:两次取到公共点,两次所取的值不相同。
公共点:f[i][j][k][l]=a[i][j]+max(max(f[i][j-1][k-1][l],f[i-1][j][k][l-1]),max(f[i][j-1][k][l-1],f[i-1][j][k-1][l]))

//因为存在公共点,所以该点只取一次。总共四种情况,不重不漏。

不同点:
f[i][j][k][l]=a[i][j]+a[k][l]+max(max(f[i][j-1][k-1][l],f[i-1][j][k][l-1]),max(f[i][j-1][k][l-1],f[i-1][j][k-1][l]))

codevs_1043 方格取数(棋盘DP)的更多相关文章

  1. P1004 方格取数[棋盘dp]

    题目来源:洛谷 题目描述 设有N×N的方格图(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 ...

  2. 方格取数(dp)

    方格取数 时间限制: 1 Sec  内存限制: 128 MB提交: 9  解决: 4[提交][状态][讨论版][命题人:quanxing] 题目描述 设有N×N的方格图,我们在其中的某些方格中填入正整 ...

  3. 洛谷P1004 方格取数-四维DP

    题目描述 设有 N \times NN×N 的方格图 (N \le 9)(N≤9) ,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00 .如下图所示(见样例): A 0 0 0 0 0 ...

  4. 洛谷 - P1004 - 方格取数 - 简单dp

    https://www.luogu.org/problemnew/show/P1004 这道题分类到简单dp但是感觉一点都不简单……这种做两次的dp真的不是很懂怎么写.假如是贪心做两次,感觉又不能证明 ...

  5. hihocoder #1617 : 方格取数(dp)

    题目链接:http://hihocoder.com/problemset/problem/1617 题解:一道递推的dp题.这题显然可以考虑两个人同时从起点出发这样就不会重复了设dp[step][i] ...

  6. 【noi 2.6_8786】方格取数(DP)

    题意:N*N的方格图每格有一个数值,要求从左上角每步往右或往下走到右下角,问走2次的最大和. 解法:走一次的很好想,而走2次,不可误以为先找到最大和的路,再找剩下的最大和的路就是正解.而应该认清动态规 ...

  7. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  8. HDU 1565&1569 方格取数系列(状压DP或者最大流)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  9. HDU 1565 - 方格取数(1) - [状压DP][网络流 - 最大点权独立集和最小点权覆盖集]

    题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32 ...

随机推荐

  1. python数据排序

    1.原地排序 data.sort() #对原列表进行排序 2.复制排序 data2 = sorted(data) #原列表不变,作为参数传给sorted()方法进行排序

  2. 如何拿到半数面试公司Offer——我的Python求职之路(转)

    从八月底开始找工作,短短的一星期多一些,面试了9家公司,拿到5份Offer,可能是因为我所面试的公司都是些创业性的公司吧,不过还是感触良多,因为学习Python的时间还很短,没想到还算比较容易的找到了 ...

  3. Android 本地css引用

    /** 全局web样式 * 以前看不懂,现在仔细,耐心的看看,全懂了,认真的看一遍都懂了 * * * */ // 链接样式文件,代码块高亮的处理 public final static String ...

  4. Ping过程&ICMP

    1.ICMP(Internet控制消息协议) ICMP=Internet Control Message Protocol 它是TCP/IP协议族的一个子协议 作用:用于在IP主机.路由之间传递控制消 ...

  5. IOS开发---菜鸟学习之路--(五)-MacBook购买前后感想

    前几天刚入手了一台MACBOOK AIR 13寸 13版的 这几天使用过来个人感觉还是非常不错的. 这几天每天晚上都抱着她玩到十一.二点. 今天晚上突然想起来好久没续写博客了.就连忙开始码字了. 此章 ...

  6. Leetcode 630.课程表III

    课程表III 这里有 n 门不同的在线课程,他们按从 1 到 n 编号.每一门课程有一定的持续上课时间(课程时间)t 以及关闭时间第 d 天.一门课要持续学习 t 天直到第 d天时要完成,你将会从第 ...

  7. [oldboy-django][5python基础][高级特性]Iterator迭代器

    # 区分可迭代对象iterable, 迭代器iterator, 生成器generator a. iterable 可直接用for循环的对象,都称为可迭代对象, from collections imp ...

  8. mybatis maven 代码生成器(mysql)

    pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="htt ...

  9. BZOJ 1564 :[NOI2009]二叉查找树(树型DP)

    二叉查找树 [题目描述] 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结 ...

  10. [HAOI2018][bzoj5306] 染色 [容斥原理+NTT]

    题面 传送门 思路 这道题的核心在于"恰好有$k$种颜色占了恰好$s$个格子" 这些"恰好",引导我们去思考,怎么求出总的方案数呢? 分开考虑 考虑把恰好有$s ...