1043 方格取数

2000年NOIP全国联赛提高组

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 钻石 Diamond
 
 
 
题目描述 Description

设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。如下图所示(见样例):

某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。

此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。

输入描述 Input Description

输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。

输出描述 Output Description

只需输出一个整数,表示2条路径上取得的最大的和。

样例输入 Sample Input

8

2  3  13

2  6   6

3  5   7

4  4  14

5  2  21

5  6   4

6 3  15

7 2  14

0 0  0

样例输出 Sample Output

67

数据范围及提示 Data Size & Hint
如描述

分类标签 Tags 点此展开

 
 
 
 代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,x,y,z;
int main()
{
    scanf("%d",&n);
    ][n+],f[n+][n+][n+][n+];
    memset(a,,sizeof(a));
    memset(f,,sizeof(f));
    )
    {
        scanf("%d%d%d",&x,&y,&z);
        &&y==&&z==) break;
        else
        {
            a[x][y]=z;
        }
    }
    ;i<=n;i++)
      ;j<=n;j++)
        ;k<=n;k++)
          ;l<=n;l++)
           {
               if(i==k&&j==l)
                 f[i][j][k][l]=a[i][j]+max(max(f[i][j-][k][l-],f[i-][j][k-][l]),max(f[i][j-][k-][l],f[i-][j][k][l-]));
               ][k][l-],f[i-][j][k-][l]),max(f[i][j-][k-][l],f[i-][j][k][l-]));
           }
    printf("%d",f[n][n][n][n]);
    ;
}

思路

因为是取两次,所以有的同学会想到先取一遍最大值,把取过的附值为0,然后再取一遍。

但这时怎样标记那个点取过是非常困难的,所以我们自然而然的想到可以设一个4维DP f[i][j][k][l] ,

i代表第一次取值的横坐标,j代表第一次取值的纵坐标,k代表第二次取值的横坐标,

l代表第二次取值的纵坐标,然后一个4重循环,列出动态转移方程。

分成两种情况:两次取到公共点,两次所取的值不相同。
公共点:f[i][j][k][l]=a[i][j]+max(max(f[i][j-1][k-1][l],f[i-1][j][k][l-1]),max(f[i][j-1][k][l-1],f[i-1][j][k-1][l]))

//因为存在公共点,所以该点只取一次。总共四种情况,不重不漏。

不同点:
f[i][j][k][l]=a[i][j]+a[k][l]+max(max(f[i][j-1][k-1][l],f[i-1][j][k][l-1]),max(f[i][j-1][k][l-1],f[i-1][j][k-1][l]))

codevs_1043 方格取数(棋盘DP)的更多相关文章

  1. P1004 方格取数[棋盘dp]

    题目来源:洛谷 题目描述 设有N×N的方格图(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 ...

  2. 方格取数(dp)

    方格取数 时间限制: 1 Sec  内存限制: 128 MB提交: 9  解决: 4[提交][状态][讨论版][命题人:quanxing] 题目描述 设有N×N的方格图,我们在其中的某些方格中填入正整 ...

  3. 洛谷P1004 方格取数-四维DP

    题目描述 设有 N \times NN×N 的方格图 (N \le 9)(N≤9) ,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00 .如下图所示(见样例): A 0 0 0 0 0 ...

  4. 洛谷 - P1004 - 方格取数 - 简单dp

    https://www.luogu.org/problemnew/show/P1004 这道题分类到简单dp但是感觉一点都不简单……这种做两次的dp真的不是很懂怎么写.假如是贪心做两次,感觉又不能证明 ...

  5. hihocoder #1617 : 方格取数(dp)

    题目链接:http://hihocoder.com/problemset/problem/1617 题解:一道递推的dp题.这题显然可以考虑两个人同时从起点出发这样就不会重复了设dp[step][i] ...

  6. 【noi 2.6_8786】方格取数(DP)

    题意:N*N的方格图每格有一个数值,要求从左上角每步往右或往下走到右下角,问走2次的最大和. 解法:走一次的很好想,而走2次,不可误以为先找到最大和的路,再找剩下的最大和的路就是正解.而应该认清动态规 ...

  7. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  8. HDU 1565&1569 方格取数系列(状压DP或者最大流)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  9. HDU 1565 - 方格取数(1) - [状压DP][网络流 - 最大点权独立集和最小点权覆盖集]

    题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32 ...

随机推荐

  1. python集成开发环境PyCharm

    环境安装视频介绍:http://pan.baidu.com/s/1gfz6wiZ ppmb 外加几个截图: activate:

  2. C#开发模式——dll多级引用的问题

    C#解决方案里有两种引用方式,项目引用和dll物理文件引用. 一.项目引用 严格引用,项目文件需包含在解决方案里,好处是便于调试,可直接进入代码.缺点是耦合度太高(必须全部编译通过才能run起来),项 ...

  3. [项目2] 10mins

    1.准备工作 M层:生成虚假数据 from django.db import models from faker import Factory # Create your models here. c ...

  4. HDU 5657 CA Loves Math 状压DP + 枚举

    题意: 给出\(A(2 \leq A \leq 11), n(0 \leq n \leq 10^9), k(1 \leq k \leq 10^9)\). 求区间\([1, A^n]\)中各个数字互不相 ...

  5. js数据类型的检测总结,附面试题--封装一个函数,输入任意,输出他的类型

    一.javascript 中有几种类型的值 1.基本数据类型 : 包括 Undefined.Null.Boolean.Number.String.Symbol (ES6 新增,表示独一无二的值) 特点 ...

  6. System.AccessViolationException”类型的第一次机会异常在 System.Data.dll 中发生 其他信息: 尝试读取或写入受保护的内存。这通常指示其他内存已损坏。

    管理员cmd中运行  netsh winsock reset

  7. xss games20关小游戏附源代码

    1. get方式的的值直接输出来了. ?name=<script>alert(1)</script> 2. 同样没有过滤,不过需要闭合前边的双引号和>. "&g ...

  8. Android SDK 目录详解(转)

    Android SDK目录结构和工具介绍是本文要介绍的内容,主要是来了解并学习Android SDK的内容,具体关于Android SDK内容的详解来看本文. Android SDK目录下有很多文件夹 ...

  9. mysql数据库增、删、改、查等基本命令

    测试环境:windows7 64位 mysql.exe.Navicat Lite for MySQL.mysql 5.0.18 mysql数据库的基本结构: 数据库(database)包含多个表(ta ...

  10. winform DataGridView添加合计行

    使用方法 /* DataTable dt= DBUtility.DB.FromSql(sql).ToDataTable(); DataGridViewAddSumRow sumRow = new Da ...