caffe版faster-RCNN环境搭建
- faster-rcnn提出论文: 《Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks》
- faster-rcnn 的算法详解可看这篇博文(清晰易懂,良心博文!): http://blog.csdn.net/shenxiaolu1984/article/details/51152614
- faster-rcnn Python版本源码地址:https://github.com/rbgirshick/py-faster-rcnn
- 基本按照官网上的readme
1.电脑上已经有可运行caffe所需的环境
2.下载faster-rcnn python版本源码
git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git
3. 进入/py-faster-rcnn/lib 进行编译,build the Cython modules
cd py-faster-rcnn/lib
make
- 如果重新升级或者降级numpy依赖包,需要重新去掉之前生成的文件,重新make; 否则会报这里面的错
问题:
python setup.py build_ext --inplace
running build_ext
cythoning utils/bbox.pyx to utils/bbox.c Error compiling Cython file:
------------------------------------------------------------
...
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Sergey Karayev
# -------------------------------------------------------- cimport cython
^
------------------------------------------------------------ utils/bbox.pyx:8:8: Compiler crash in AnalyseDeclarationsTransform File 'ModuleNode.py', line 122, in analyse_declarations: ModuleNode(bbox.pyx:1:0,
full_module_name = 'utils.cython_bbox')
File 'Nodes.py', line 408, in analyse_declarations: StatListNode(bbox.pyx:8:0)
File 'Nodes.py', line 408, in analyse_declarations: StatListNode(bbox.pyx:8:8)
File 'Nodes.py', line 7396, in analyse_declarations: CImportStatNode(bbox.pyx:8:8,
module_name = u'cython') File "/home/dsp/anaconda2/lib/python2.7/site-packages/Cython/Utils.py", line 148, in search_include_directories
path = os.path.join(dir, dotted_filename)
File "/home/dsp/anaconda2/lib/python2.7/posixpath.py", line 73, in join
path += '/' + b
UnicodeDecodeError: 'ascii' codec can't decode byte 0xe6 in position 10: ordinal not in range(128)
building 'utils.cython_bbox' extension
gcc -pthread -B /home/dsp/anaconda2/compiler_compat -Wl,--sysroot=/ -fno-strict-aliasing -g -O2 -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/home/dsp/anaconda2/lib/python2.7/site-packages/numpy/core/include -I/home/dsp/anaconda2/include/python2.7 -c utils/bbox.c -o build/temp.linux-x86_64-2.7/utils/bbox.o -Wno-cpp -Wno-unused-function
utils/bbox.c:1:2: error: #error Do not use this file, it is the result of a failed Cython compilation.
#error Do not use this file, it is the result of a failed Cython compilation.
^
error: command 'gcc' failed with exit status 1
Makefile:2: recipe for target 'all' failed
make: *** [all] Error 1
- 先各种百度,安装cython等;结果发现时路径的坑
- 神坑:路径;py-faster-rcnn存放位置路径中不能有中文,否则报错UnicodeDecodeError: 'ascii' codec can't decode byte 0xe6 in position
- 最后放到 /home/uername/ 下直接makec成功
4.编译/py-faster-rcnn/caffe-fast-rcnn
cd py-faster-rcnn/caffe-fast-rcnn
make -j32 && make pycaffe
- Makefile.config文件直接用的本机配置caffe的文件
- 问题:
dsp@dsp-PowerEdge-R730:/home/user/ran/Desktop/protobuf-2.6.$ protoc
[libprotobuf FATAL google/protobuf/stubs/common.cc:] This program requires version 3.4. of the Protocol Buffer runtime library, but the installed version is 2.6.. Please update your library. If you compiled the program yourself, make sure that your headers are from the same version of Protocol Buffers as your link-time library. (Version verification failed in "google/protobuf/any.pb.cc".)
terminate called after throwing an instance of 'google::protobuf::FatalException'
what(): This program requires version 3.4. of the Protocol Buffer runtime library, but the installed version is 2.6.. Please update your library. If you compiled the program yourself, make sure that your headers are from the same version of Protocol Buffers as your link-time library. (Version verification failed in "google/protobuf/any.pb.cc".)
Aborted (core dumped)
这个问题是服务器上的错误:http://blog.csdn.net/m0_37477175/article/details/78233983
https://www.cnblogs.com/javaee6/p/4849051.html
https://github.com/BVLC/caffe/issues/5711
前面两种方法都是了没有解决,后面github上的issue也没有给出解决方法,看以后能不能解决!!!
In file included from ./include/caffe/util/device_alternate.hpp:40:0,
from ./include/caffe/common.hpp:19,
from ./include/caffe/blob.hpp:8,
from src/caffe/blob.cpp:4:
./include/caffe/util/cudnn.hpp:8:34: fatal error: caffe/proto/caffe.pb.h: 没有那个文件或目录
- 按照:解决方法: 用protoc从caffe/src/caffe/proto/caffe.proto生成caffe.pb.h和caffe.pb.cc ,http://blog.csdn.net/xmzwlw/article/details/48270225没有作用;后面还有一串错误
In file included from ./include/caffe/util/device_alternate.hpp:40:0,
from ./include/caffe/common.hpp:19,
from ./include/caffe/blob.hpp:8,
from ./include/caffe/layers/loss_layer.hpp:6,
from src/caffe/layers/loss_layer.cpp:3:
./include/caffe/util/cudnn.hpp: In function ‘const char* cudnnGetErrorString(cudnnStatus_t)’:
./include/caffe/util/cudnn.hpp:21:10: warning: enumeration value ‘CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING’ not handled in switch [-Wswitch]
switch (status) {
^
./include/caffe/util/cudnn.hpp: In function ‘void caffe::cudnn::setConvolutionDesc(cudnnConvolutionStruct**, cudnnTensorDescriptor_t, cudnnFilterDescriptor_t, int, int, int, int)’:
./include/caffe/util/cudnn.hpp:108:70: error: too few arguments to function ‘cudnnStatus_t cudnnSetConvolution2dDescriptor(cudnnConvolutionDescriptor_t, int, int, int, int, int, int, cudnnConvolutionMode_t, cudnnDataType_t)’
pad_h, pad_w, stride_h, stride_w, 1, 1, CUDNN_CROSS_CORRELATION));
^
./include/caffe/util/cudnn.hpp:15:28: note: in definition of macro ‘CUDNN_CHECK’
cudnnStatus_t status = condition; \
^
In file included from ./include/caffe/util/cudnn.hpp:5:0,
from ./include/caffe/util/device_alternate.hpp:40,
from ./include/caffe/common.hpp:19,
from ./include/caffe/blob.hpp:8,
from ./include/caffe/layers/loss_layer.hpp:6,
from src/caffe/layers/loss_layer.cpp:3:
/usr/local/cuda/include/cudnn.h:500:27: note: declared here
cudnnStatus_t CUDNNWINAPI cudnnSetConvolution2dDescriptor( cudnnConvolutionDescriptor_t convDesc,
^
In file included from ./include/caffe/util/device_alternate.hpp:40:0,
from ./include/caffe/common.hpp:19,
from ./include/caffe/blob.hpp:8,
from ./include/caffe/layers/loss_layer.hpp:6,
from src/caffe/layers/loss_layer.cpp:3:
./include/caffe/util/cudnn.hpp: In function ‘void caffe::cudnn::createPoolingDesc(cudnnPoolingStruct**, caffe::PoolingParameter_PoolMethod, cudnnPoolingMode_t*, int, int, int, int, int, int)’:
./include/caffe/util/cudnn.hpp:127:41: error: too few arguments to function ‘cudnnStatus_t cudnnSetPooling2dDescriptor(cudnnPoolingDescriptor_t, cudnnPoolingMode_t, cudnnNanPropagation_t, int, int, int, int, int, int)’
pad_h, pad_w, stride_h, stride_w));
^
./include/caffe/util/cudnn.hpp:15:28: note: in definition of macro ‘CUDNN_CHECK’
cudnnStatus_t status = condition; \
^
In file included from ./include/caffe/util/cudnn.hpp:5:0,
from ./include/caffe/util/device_alternate.hpp:40,
from ./include/caffe/common.hpp:19,
from ./include/caffe/blob.hpp:8,
from ./include/caffe/layers/loss_layer.hpp:6,
from src/caffe/layers/loss_layer.cpp:3:
- 后面发现时cndnn版本不兼容:Faster R-CNN 和最新的版本cuDNN V5.0不兼容问题
解决方法: cd py-faster-rcnn/caffe-fast-rcnn
Git remote add caffe https://github.com/BVLC/caffe.git
git fetch caffe
git merge caffe/master 在合并之后注释掉include/caffe/layers/python_layer.hppa文件里的self_.attr(“phase”) = static_cast(this->phase_)- 重新从caffe中fetch and merge
- 遇到merge冲突,直接编辑
// Caffe utility functions
bp::def("init_log", &InitLog);
bp::def("init_log", &InitLogLevel);
bp::def("init_log", &InitLogLevelPipe);
bp::def("log", &Log);
bp::def("has_nccl", &HasNCCL);
bp::def("set_mode_cpu", &set_mode_cpu);
bp::def("set_mode_gpu", &set_mode_gpu);
bp::def("set_random_seed", &set_random_seed);
bp::def("set_device", &Caffe::SetDevice);
<<<<<<< HEAD
bp::def("set_random_seed", &Caffe::set_random_seed);
=======
bp::def("solver_count", &Caffe::solver_count);
bp::def("set_solver_count", &Caffe::set_solver_count);
bp::def("solver_rank", &Caffe::solver_rank);
bp::def("set_solver_rank", &Caffe::set_solver_rank);
bp::def("set_multiprocess", &Caffe::set_multiprocess);
>>>>>>> caffe/master
- 最后编译成功;faster-rcnn 安装里面也提到了处理版本不兼容,进行文件替换的方法
AR -o .build_release/lib/libcaffe.a
LD -o .build_release/lib/libcaffe.so.1.0.0
CXX/LD -o .build_release/tools/convert_imageset.bin
CXX/LD -o .build_release/tools/train_net.bin
CXX/LD -o .build_release/tools/finetune_net.bin
CXX/LD -o .build_release/tools/compute_image_mean.bin
CXX/LD -o .build_release/tools/upgrade_net_proto_text.bin
CXX/LD -o .build_release/tools/test_net.bin
CXX/LD -o .build_release/tools/upgrade_net_proto_binary.bin
CXX/LD -o .build_release/tools/upgrade_solver_proto_text.bin
CXX/LD -o .build_release/tools/net_speed_benchmark.bin
CXX/LD -o .build_release/tools/device_query.bin
CXX/LD -o .build_release/tools/extract_features.bin
CXX/LD -o .build_release/examples/cifar10/convert_cifar_data.bin
CXX/LD -o .build_release/examples/mnist/convert_mnist_data.bin
CXX/LD -o .build_release/examples/cpp_classification/classification.bin
CXX/LD -o .build_release/tools/caffe.bin
CXX/LD -o .build_release/examples/siamese/convert_mnist_siamese_data.bin
CXX/LD -o python/caffe/_caffe.so python/caffe/_caffe.cpp
touch python/caffe/proto/__init__.py
PROTOC (python) src/caffe/proto/caffe.proto
5、下载Faster R-CNN的预训练模型
cd py-faster-rcnn
./data/scripts/fetch_faster_rcnn_models.sh
model:https://dl.dropboxusercontent.com/s/o6ii098bu51d139/faster_rcnn_models.tgz?dl=0
6、运行demo.py
cd py-faster-rcnn
./tools/demo.py
7.Usage:训练
To train and test a Faster R-CNN detector using the alternating optimization algorithm from our NIPS 2015 paper, use experiments/scripts/faster_rcnn_alt_opt.sh. Output is written underneath $FRCN_ROOT/output.
cd $FRCN_ROOT
./experiments/scripts/faster_rcnn_alt_opt.sh [GPU_ID] [NET] [--set ...]
# GPU_ID is the GPU you want to train on
# NET in {ZF, VGG_CNN_M_1024, VGG16} is the network arch to use
# --set ... allows you to specify fast_rcnn.config options, e.g.
# --set EXP_DIR seed_rng1701 RNG_SEED 1701
AttributeError: 'module' object has no attribute 'text_format'
在文件./lib/fast_rcnn/train.py增加一行import google.protobuf.text_format 即可解决问题
8.后续问题
I1119 21:29:42.451519 21365 net.cpp:744] Ignoring source layer pool5_spm6
I1119 21:29:42.451537 21365 net.cpp:744] Ignoring source layer pool5_spm6_flatten
I1119 21:29:42.481129 21365 net.cpp:744] Ignoring source layer fc8
I1119 21:29:42.481151 21365 net.cpp:744] Ignoring source layer prob
Solving...
Process Process-3:
Traceback (most recent call last):
File "/home/dsp/anaconda2/lib/python2.7/multiprocessing/process.py", line 267, in _bootstrap
self.run()
File "/home/dsp/anaconda2/lib/python2.7/multiprocessing/process.py", line 114, in run
self._target(*self._args, **self._kwargs)
File "./tools/train_faster_rcnn_alt_opt.py", line 195, in train_fast_rcnn
max_iters=max_iters)
File "/home/dsp/py-faster-rcnn/tools/../lib/fast_rcnn/train.py", line 162, in train_net
model_paths = sw.train_model(max_iters)
File "/home/dsp/py-faster-rcnn/tools/../lib/fast_rcnn/train.py", line 103, in train_model
self.solver.step(1)
File "/home/dsp/py-faster-rcnn/tools/../lib/roi_data_layer/layer.py", line 144, in forward
blobs = self._get_next_minibatch()
File "/home/dsp/py-faster-rcnn/tools/../lib/roi_data_layer/layer.py", line 63, in _get_next_minibatch
return get_minibatch(minibatch_db, self._num_classes)
File "/home/dsp/py-faster-rcnn/tools/../lib/roi_data_layer/minibatch.py", line 55, in get_minibatch
num_classes)
File "/home/dsp/py-faster-rcnn/tools/../lib/roi_data_layer/minibatch.py", line 100, in _sample_rois
fg_inds, size=fg_rois_per_this_image, replace=False)
File "mtrand.pyx", line 1187, in mtrand.RandomState.choice
TypeError: 'numpy.float64' object cannot be interpreted as an index TypeError: 'numpy.float64' object cannot be interpreted as an index
还是numpy版本的问题,直接换一个版本好了
sudo pip install -U numpy==1.11.0 --这个错 “ImportError: numpy.core.multiarray failed to import”好像就是lib库里面没有重新make,去掉之前
+ ./tools/train_faster_rcnn_alt_opt.py --gpu 0 --net_name ZF --weights data/imagenet_models/ZF.v2.caffemodel --imdb voc_2007_trainval --cfg experiments/cfgs/faster_rcnn_alt_opt.yml
Traceback (most recent call last):
File "./tools/train_faster_rcnn_alt_opt.py", line 19, in <module>
from datasets.factory import get_imdb
File "/home/dsp/py-faster-rcnn/tools/../lib/datasets/factory.py", line 13, in <module>
from datasets.coco import coco
File "/home/dsp/py-faster-rcnn/tools/../lib/datasets/coco.py", line 20, in <module>
from pycocotools.coco import COCO
File "/home/dsp/py-faster-rcnn/tools/../lib/pycocotools/coco.py", line 58, in <module>
import mask
File "/home/dsp/py-faster-rcnn/tools/../lib/pycocotools/mask.py", line 3, in <module>
import pycocotools._mask as _mask
File "pycocotools/_mask.pyx", line 20, in init pycocotools._mask
File "__init__.pxd", line 989, in numpy.import_array
ImportError: numpy.core.multiarray failed to import
Reading annotation for 4901/4952
Saving cached annotations to /home/dsp/py-faster-rcnn/data/VOCdevkit2007/annotations_cache/annots.pkl
AP for aeroplane = 0.0339
AP for bicycle = 0.1139
AP for bird = 0.0069
AP for boat = 0.0646
Traceback (most recent call last):
File "./tools/test_net.py", line 90, in <module>
test_net(net, imdb, max_per_image=args.max_per_image, vis=args.vis)
File "/home/dsp/py-faster-rcnn/tools/../lib/fast_rcnn/test.py", line 295, in test_net
imdb.evaluate_detections(all_boxes, output_dir)
File "/home/dsp/py-faster-rcnn/tools/../lib/datasets/pascal_voc.py", line 322, in evaluate_detections
self._do_python_eval(output_dir)
File "/home/dsp/py-faster-rcnn/tools/../lib/datasets/pascal_voc.py", line 285, in _do_python_eval
use_07_metric=use_07_metric)
File "/home/dsp/py-faster-rcnn/tools/../lib/datasets/voc_eval.py", line 148, in voc_eval
BB = BB[sorted_ind, :]
IndexError: too many indices for array
http://blog.csdn.net/weinaonao5418/article/details/54234684
- Reference
http://blog.csdn.net/mydear_11000/article/details/70241139
caffe版faster-RCNN环境搭建的更多相关文章
- Go版GTK:环境搭建(windows)
Go版GTK:环境搭建(windows) https://blog.csdn.net/tennysonsky/article/details/79221507 所属专栏: Go语言开发实战 1 ...
- 记pytorch版faster rcnn配置运行中的一些坑
记pytorch版faster rcnn配置运行中的一些坑 项目地址 https://github.com/jwyang/faster-rcnn.pytorch 一般安装配置参考README.md文件 ...
- Tensorflow版Faster RCNN源码解析(TFFRCNN) (2)推断(测试)过程不使用RPN时代码运行流程
本blog为github上CharlesShang/TFFRCNN版源码解析系列代码笔记第二篇 推断(测试)过程不使用RPN时代码运行流程 作者:Jiang Wu 原文见:https://hom ...
- Windows下如何采用微软的Caffe配置Faster R-CNN
前言 比较简单的一篇博客.https://github.com/microsoft/caffe 微软的Caffe以在Windows下编译简单而受到了很多人的喜爱(包括我),只用改改prop配置然后无脑 ...
- Cocos2d-x 3.0正式版及android环境搭建
开发环境是:mac + xcode + eclipse ,在win以下的环境和这个都是一样的,唯一不一样的就是环境变量的配置. 以下主要介绍cocos2d-x环境的设置以及android的环境搭建 1 ...
- python 版Faster Rcnn
直接按照官网https://github.com/rbgirshick/py-faster-rcnn上的教程对faster Rcnn进行编译的时候,会发有一些层由于cudnn版本的更新,会报错如下: ...
- caffe之mac下环境搭建
参考 http://www.linuxidc.com/Linux/2016-09/135026.html 1. 安装brew,也叫homebrew,mac下类似于ubuntu的apt-get功能 cu ...
- Tensorflow版Faster RCNN源码解析(TFFRCNN) (1) VGGnet_test.py
本blog为github上CharlesShang/TFFRCNN版源码解析系列代码笔记第1篇 VGGnet_test.py ----作者:Jiang Wu(吴疆),未经允许,禁止转载--- -- ...
- faster rcnn环境编译
步骤和fast rcnn的编译一样,在编译中遇到了一个问题: 刚开始是以为python-numpy没有安装到位,后来发现是Makefile.config的配置出现了问题.原来的配置是: PYTHON_ ...
- caffe 用faster rcnn 训练自己的数据 遇到的问题
1 . 怎么处理那些pyx和.c .h文件 在lib下有一些文件为.pyx文件,遇到不能import可以cython 那个文件,然后把lib文件夹重新make一下. 遇到.c 和 .h一样的操作. 2 ...
随机推荐
- dotnet core 运行程序注意事项
.net core 程序 debug版本无法直接运行,因为没有相关的dll,只有在进入项目文件夹那一层,执行 dotnet run 来运行,会自动链接 当前用户的个人文件夹下的 .nuget/.pac ...
- 前端 五——ajax
内容概要: 1.ajax的特点 2.基于JS的ajax 3.基于jQuery的ajax 1.特点: 局部刷新 异步传送(交互) 缺点: (1)无形中向服务器发送的请求次数太多,导致服务器压力增大. ( ...
- splay模板三合一 luogu2042 [NOI2005]维护数列/bzoj1500 [NOI2005]维修数列 | poj3580 SuperMemo | luogu3391 【模板】文艺平衡树(Splay)
先是维修数列 题解看这里,但是我写的跑得很慢 #include <iostream> #include <cstdio> using namespace std; int n, ...
- luogu1939 【模板】矩阵加速(数列)
upd:现在推荐使用一个长度为 \(n\) 的一维向量.若状态矩阵 \(F\) 对下一时间的状态矩阵 \(F'\) 有影响,则 \(F'=FA\) 中的 转移矩阵 \(A\) 的赋值方法是: 若状态矩 ...
- [python学习篇] uiautomator xiaocong
Skip to content This repository Pull requests Issues Marketplace Gist Sign out Watch103 ...
- ACM-ICPC 2018 沈阳赛区网络预赛 J树分块
J. Ka Chang Given a rooted tree ( the root is node 11 ) of NN nodes. Initially, each node has zero p ...
- DS博客作业05——树
1.本周学习总结 1.1思维导图 1.2学习体会 学习:相比于之前的数据结构,树多了很多性质,相应的也多了很多计算题,不得不说,专有名词也是颇多.觉得树最独特的地方就是它的兄弟.孩子结点,用以组成了它 ...
- hdoj--1010<dfs+奇偶剪枝>
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1010 题目描述:在n*m的矩阵中,有一起点和终点,中间有墙,给出起点终点和墙,并给出步数,在该步数情况 ...
- WIFI万能钥匙协议分析
WIFI万能钥匙协议分析 需求: 上android 市场下载任意一款,wifi万能钥匙 软件,对其进行 协议分析和逆向,达成如下结果:通过对软件的分析,完成自动化爬虫,爬wifi万能钥匙的wifi库, ...
- java面试题之HashMap和TreeMap的区别
HashMap和TreeMap的区别 相同点: 都是以key和value的形式存储: key不可以重复: 都是线程不安全的: 不同点: HashMap的key可以为空 TreeMap的key值是有序的 ...