补充:
  DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False) 功能:根据各标签的值中是否存在缺失数据对轴标签进行过滤,可通过阈值调节对缺失值的容忍度 参数:axis : {0 or ‘index’, 1 or ‘columns’},或 tuple/list    how : {‘any’, ‘all’}       any : 如果存在任何NA值,则放弃该标签       all : 如果所以的值NA值,则放弃该标签    thresh : int, 默认值 None       int value :要求每排至少N个非NA值      subset : 类似数组    inplace : boolean, 默认值 False       如果为True,则进行操作并返回None。 返回:被删除的DataFrame

首先得导入,导入就省掉了,在上篇博客写了:

pandas-事例练习的更多相关文章

  1. pandas基础-Python3

    未完 for examples: example 1: # Code based on Python 3.x # _*_ coding: utf-8 _*_ # __Author: "LEM ...

  2. 10 Minutes to pandas

    摘要   一.创建对象 二.查看数据 三.选择和设置 四.缺失值处理 五.相关操作 六.聚合 七.重排(Reshaping) 八.时间序列 九.Categorical类型   十.画图      十一 ...

  3. 利用Python进行数据分析(15) pandas基础: 字符串操作

      字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join( ...

  4. 利用Python进行数据分析(10) pandas基础: 处理缺失数据

      数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...

  5. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  6. 利用Python进行数据分析(9) pandas基础: 汇总统计和计算

    pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索 ...

  7. 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...

  8. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  9. pandas.DataFrame对行和列求和及添加新行和列

    导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFra ...

  10. pandas.DataFrame排除特定行

    使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame 如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列 ...

随机推荐

  1. [图论训练]BZOJ 2118: 墨墨的等式 【最短路】

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

  2. [图论训练]BZOJ 3245: 最快路线【最短路】

    Description 精 明的小R每每开车出行总是喜欢走最快路线,而不是最短路线.很明显,每条道路的限速是小R需要考虑的关键问题.不过有一些限速标志丢失了,于是小R将不知 道能开多快.不过有一个合理 ...

  3. BZOJ1297 [SCOI2009]迷路 【矩阵优化dp】

    题目 windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意: ...

  4. BZOJ2298 [HAOI2011]problem a 【dp】

    题目 一次考试共有n个人参加,第i个人说:"有ai个人分数比我高,bi个人分数比我低."问最少有几个人没有说真话(可能有相同的分数) 输入格式 第一行一个整数n,接下来n行每行两个 ...

  5. 富文本编辑器quill---vue组件(vue-quill-editor)的使用

    1.配置webpack plugin 解决以下报错 Uncaught TypeError: Cannot read property 'imports' of undefined (image-res ...

  6. 乘法逆元__C++

    在开始之前我们先介绍3个定理: 1.乘法逆元(在维基百科中也叫倒数,当然是 mod p后的,其实就是倒数不是吗?): 如果ax≡1 (mod p),且gcd(a,p)=1(a与p互质),则称a关于模p ...

  7. C++的静态联编和动态联编详解

    一.概述: 通常来说联编就是将模块或者函数合并在一起生成可执行代码的处理过程,同时对每个模块或者函数调用分配内存地址,并且对外部访问也分配正确的内存地址,它是计算机程序彼此关联的过程.按照联编所进行的 ...

  8. 用户空间使用i2c_dev

    ============================================作者:yuanluluhttp://blog.csdn.NET/yuanlulu 版权没有,但是转载请保留此段声 ...

  9. php--转码函数

    最近在用dedecms二次开发会员功能:大家都知道dedecms编码是GBK格式的:所以在我们在项目中经常需要转码,在我了解中有两种转码方式:一是:iconv:二是mb_convert_encodin ...

  10. 洛谷——P2983 [USACO10FEB]购买巧克力Chocolate Buying

    P2983 [USACO10FEB]购买巧克力Chocolate Buying 题目描述 Bessie and the herd love chocolate so Farmer John is bu ...