度度熊的王国战略

度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族。

哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士。

所以这一场战争,将会十分艰难。

为了更好的进攻哗啦啦族,度度熊决定首先应该从内部瓦解哗啦啦族。

第一步就是应该使得哗啦啦族内部不能同心齐力,需要内部有间隙。

哗啦啦族一共有n个将领,他们一共有m个强关系,摧毁每一个强关系都需要一定的代价。

现在度度熊命令你需要摧毁一些强关系,使得内部的将领,不能通过这些强关系,连成一个完整的连通块,以保证战争的顺利进行。

请问最少应该付出多少的代价。

Input

本题包含若干组测试数据。

第一行两个整数n,m,表示有n个将领,m个关系。

接下来m行,每行三个整数u,v,w。表示u将领和v将领之间存在一个强关系,摧毁这个强关系需要代价w

数据范围:

2<=n<=3000

1<=m<=100000

1<=u,v<=n

1<=w<=1000

Output

对于每组测试数据,输出最小需要的代价。

Sample Input
2 1
1 2 1
3 3
1 2 5
1 2 4
2 3 3
Sample Output
1
3
解法:
1 题意瞎猜,不一定是正确解法(重点是这句)
2 我们用并查集把它们的集合先分一分,再保存每个集合里面的元素
3 把点连的每一条边权值算在点自己本身
 比如 1 2 3 和 2 3 4 那么2这个点就是3+4==7,1权值是3,3权值是4,注意重边是相加不算取最小
4 保存下来的每一个集合都取各自元素权值的最小值,加起来就行
5 我理解的题意是每个块都必须独立出一个点就算是不能形成“完整的连通块”,如果是1-2-3-4-1形成一个圈,也必须独立出一个点,而不是断开形成1-2 3-4
6 本身独立的不算在内
 #include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+;
vector<int>Ve[maxn];
map<int,int>Mp,mp;
int tree[*maxn];
int Find(int x)
{
if(x==tree[x])
return x;
return tree[x]=Find(tree[x]);
}
int X[][];
void Merge(int x,int y)
{
int fx=Find(x);
int fy=Find(y);
if(fx!=fy){
tree[fx]=fy;
}
}
int n,m;
int main(){
while(~scanf("%d%d",&n,&m)){
memset(X,,sizeof(X));
Mp.clear();
mp.clear();
for(int i=;i<=n;i++){
Ve[i].clear();
}
for(int i=;i<=n;i++){
tree[i]=i;
}
for(int i=;i<=m;i++){
int s,t,w;
scanf("%d%d%d",&s,&t,&w);
if(X[s][t]){
X[s][t]+=w;
X[t][s]+=w;
}else{
X[s][t]=w;
X[t][s]=w;
}
Merge(s,t);
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(i==j) continue;
Mp[i]+=(X[i][j]);
}
}
for(int i=;i<=n;i++){
if(mp[Find(i)]){
mp[Find(i)]=min(mp[Find(i)],Mp[i]);
}else{
mp[Find(i)]=Mp[i];
}
Ve[Find(i)].push_back(i);
}
long long sum=;
for(int i=;i<=n;i++){
if(Find(i)==i){
if(Ve[i].size()>){
sum+=mp[i];
}
}
}
printf("%lld\n",sum);
}
return ;
}

2017"百度之星"程序设计大赛 - 资格赛 度度熊的王国战略的更多相关文章

  1. 2017"百度之星"程序设计大赛 - 资格赛-度度熊与邪恶大魔王(dp+后缀最小值)

    度度熊与邪恶大魔王 思路:由于防御和血量的范围很小,所以暴力枚举出对于每种防御造成的每种伤害所需的最小花费,最后只需在伤害大于等于血量的情况下再找到最小花费(这个只需要后缀最小值预处理一下就可以了) ...

  2. hdu 6082 度度熊与邪恶大魔王(2017"百度之星"程序设计大赛 - 资格赛 )

    度度熊与邪恶大魔王 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  3. [SinGuLaRiTy] 2017 百度之星程序设计大赛-资格赛

    [SinGuLaRiTy-1034] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. 度度熊保护村庄  Time Limit: 2000/10 ...

  4. 2017"百度之星"程序设计大赛 - 资格赛【1001 Floyd求最小环 1002 歪解(并查集),1003 完全背包 1004 01背包 1005 打表找规律+卡特兰数】

    度度熊保护村庄 Accepts: 13 Submissions: 488 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3276 ...

  5. 2017"百度之星"程序设计大赛 - 资格赛

    度度熊与邪恶大魔王  Accepts: 3666  Submissions: 22474  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: ...

  6. 2017"百度之星"程序设计大赛 - 资格赛 1002 度度熊的王国战略

    全局最小割 Stoer-Wagner (SW算法)优化 优化吃藕了,感谢放宽时限,感谢平板电视 (pb_ds) #include <iostream> #include <cstdi ...

  7. 2017"百度之星"程序设计大赛 - 资格赛 寻找母串

    Problem Description 对于一个串S,当它同时满足如下条件时,它就是一个01偏串: 1.只由0和1两种符组成: 2.在S的每一个前缀中,0的个数不超过1的个数: 3.S中0的个数和1的 ...

  8. HDU 6118 度度熊的交易计划 【最小费用最大流】 (2017"百度之星"程序设计大赛 - 初赛(B))

    度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  9. HDU 6119 小小粉丝度度熊 【预处理+尺取法】(2017"百度之星"程序设计大赛 - 初赛(B))

    小小粉丝度度熊 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

随机推荐

  1. Gradients渐变属性

    一个很不错的网站http://www.w3schools.com/css/css3_gradients.asp http://www.w3cplus.com/css3/new-css3-linear- ...

  2. WebDriver API——浏览器控制暨如何学习webdriver API

    在测试过程中我们可能需要对浏览器进行控制,大小控制啊,刷新页面啊,前进后退等等,最常用的两个接口是window和Navigation. 我们最常用的就是这4个,那么你是否感兴趣它们后面是什么,它们是怎 ...

  3. 在Linux中利用Service命令添加系统服务及开机自启动

    有时候我们需要Linux系统在开机的时候自动加载某些脚本或系统服务 主要用三种方式进行这一操作: ln -s                       在/etc/rc.d/rc*.d目录中建立/e ...

  4. void类型和void *指针类型(网上摘抄总结)【转】

    http://www.blogjava.net/fhtdy2004/archive/2009/07/09/286004.html 现在在学linux编程过程中遇到很多void *指针类型,由于c很早学 ...

  5. 用margin还是用padding?(3)—— 负margin实战

    看过一篇文章是关于我知道你不知道的负Margin,里面对margin做了总结: 当margin四个值都为正数值的话,那么margin按照正常逻辑同周围元素产生边距.当元素margin的top和left ...

  6. Understand JavaScript Callback Functions and Use Them

    In JavaScript, functions are first-class objects; that is, functions are of the type Object and they ...

  7. UVA-11374(最短路)

    题意: 机场快线有经济线和商业线,现在分别给出经济线和商业线的的路线,现在只能坐一站商业线,其他坐经济线,问从起点到终点的最短用时是多少,还有路线是怎样的; 思路: 预处理出起点到所有站的最短距离和终 ...

  8. 算法实现c语言--01

    打印九九乘法表 #include<stdio.h> #include<stdlib.h> int main() { , j = ; ; i <= ; i++) { ; j ...

  9. VS2013Z学习java插件

    https://visualstudiogallery.msdn.microsoft.com/bc561769-36ff-4a40-9504-e266e8706f93 Bugs and Feature ...

  10. nagios对windows流量的检测

    windows下用于和 nagios 整合监控的方式主要有三种:nsclient++ .nrpe_nt.SNMP.三者各自的特点主要如下: 1.nsclient++比较成熟稳定,文档也丰富,内置很多了 ...