题目1 : 优化延迟

时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

小Ho编写了一个处理数据包的程序。程序的输入是一个包含N个数据包的序列。每个数据包根据其重要程度不同,具有不同的"延迟惩罚值"。序列中的第i个数据包的"延迟惩罚值"是Pi。如果N个数据包按照<Pi1, Pi2, ... PiN>的顺序被处理,那么总延迟惩罚

SP=1*Pi1+2*Pi2+3*Pi3+...+N*PiN(其中i1, i2, ... iN是1, 2, 3, ... N的一个排列)。

小Ho的程序会依次处理每一个数据包,这时N个数据包的总延迟惩罚值SP为

1*P1+2*P2+3*P3+...+i*Pi+...+N*PN。

小Hi希望可以降低总延迟惩罚值。他的做法是在小Ho的程序中增加一个大小为K的缓冲区。N个数据包在被处理前会依次进入缓冲区。当缓冲区满的时候会将当前缓冲区内"延迟惩罚值"最大的数据包移出缓冲区并进行处理。直到没有新的数据包进入缓冲区时,缓冲区内剩余的数据包会按照"延迟惩罚值"从大到小的顺序被依次移出并进行处理。

例如,当数据包的"延迟惩罚值"依次是<5, 3, 1, 2, 4>,缓冲区大小K=2时,数据包被处理的顺序是:<5, 3, 2, 4, 1>。这时SP=1*5+2*3+3*2+4*4+5*1=38。

现在给定输入的数据包序列,以及一个总延迟惩罚阈值Q。小Hi想知道如果要SP<=Q,缓冲区的大小最小是多少?

输入

Line 1: N Q

Line 2: P1 P2 ... PN

对于50%的数据: 1 <= N <= 1000

对于100%的数据: 1 <= N <= 100000, 0 <= Pi <= 1000, 1 <= Q <= 1013

输出

输出最小的正整数K值能满足SP<=Q。如果没有符合条件的K,输出-1。

样例输入
5 38
5 3 1 2 4
样例输出
2

题目链接:hihoCoder 第136周

题目非常明显就是裸的二分答案,想测试的堆看看手写的是不是有问题,以及速度如何,比封装的pq要快一些前者700ms+后者1000ms+,方便起见我的堆是递归形式的,非递归就不是很熟了。

代码:

#include <stdio.h>
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 100010;
LL arr[N];
int n;
LL q; struct heap
{
LL a[N];
int sz;
void init()
{
sz = 0;
}
void up(const int &cur)
{
int fa = cur >> 1;
if (fa > 0 && a[cur] > a[fa])
{
swap(a[cur], a[fa]);
up(fa);
}
}
void down(const int &cur)
{
int lson = cur << 1, rson = cur << 1 | 1;
if (lson > sz)
return ;
else
{
int tar;
if (rson > sz)
tar = lson;
else
tar = a[lson] > a[rson] ? lson : rson;
if (a[cur] < a[tar])
{
swap(a[tar], a[cur]);
down(tar);
}
}
}
void push(int x)
{
a[++sz] = x;
up(sz);
}
void pop()
{
swap(a[sz--], a[1]);
down(1);
}
LL top()
{
return a[1];
}
bool empty()
{
return !sz;
}
};
heap one; bool check(const int &k)
{
one.init();
LL bas = 1LL;
LL sp = 0LL;
for (int i = 1; i <= k; ++i)
one.push(arr[i]);
for (int i = k + 1; i <= n; ++i)
{
sp += (bas++) * one.top();
one.pop();
one.push(arr[i]);
}
while (!one.empty())
{
sp += (bas++) * one.top();
one.pop();
}
return sp <= q;
}
int main(void)
{
int i;
while (~scanf("%d%lld", &n, &q))
{
for (i = 1; i <= n; ++i)
scanf("%lld", arr + i);
int ans = -1;
int L = 1, R = n;
while (L <= R)
{
int mid = (L + R) >> 1;
if (check(mid))
{
R = mid - 1;
ans = mid;
}
else
L = mid + 1;
}
printf("%d\n", ans);
}
return 0;
}

hihoCoder 第136周 优化延迟(二分答案+手写堆)的更多相关文章

  1. 手写堆优化dijkstra

    \(dijkstra\) 算法的堆优化,时间复杂度为\(O(n+m)\log n\) 添加数组\(id[]\)记录某节点在堆中的位置,可以避免重复入堆从而减小常数 而这一方法需要依托手写堆 #incl ...

  2. 洛谷P3975 跳房子 [DP,单调队列优化,二分答案]

    题目传送门 跳房子 题目描述 跳房子,也叫跳飞机,是一种世界性的儿童游戏,也是中国民间传统的体育游戏之一. 跳房子的游戏规则如下: 在地面上确定一个起点,然后在起点右侧画 n 个格子,这些格子都在同一 ...

  3. HAOI2008 木棍分割 数据结构优化dp+二分答案

    很久之前打的题,现在补篇博客 打滚动数组 #E. 木棍分割 Accepted 100 1712 ms 1512 KiB   2019-05-07 17:01:23 Short 不打滚动数组 #419. ...

  4. [BZOJ 1486][HNOI2009]最小圈(二分答案+dfs写的spfa判负环)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1486 分析:容易想到先二分答案x,然后把所有边的权值-x,那么如果图中存在权值和为0的 ...

  5. hihocoder hiho第38周: 二分·二分答案 (二分搜索算法应用:二分搜索值+bfs判断可行性 )

    题目1 : 二分·二分答案 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回和上上回里我们知道Nettle在玩<艦これ>,Nettle在整理好舰队之后 ...

  6. Codeforces Round #262 (Div. 2)C(二分答案,延迟标记)

    这是最大化最小值的一类问题,这类问题通常用二分法枚举答案就行了. 二分答案时,先确定答案肯定在哪个区间内.然后二分判断,关键在于怎么判断每次枚举的这个答案行不行. 我是用a[i]数组表示初始时花的高度 ...

  7. ACM学习历程—Hihocoder 1139 二分·二分答案(bfs)

    http://hihocoder.com/problemset/problem/1139 这题提示上写的是二分,但是感觉不二分应该也可以,至少题目是AC的... 二分的思想就是二分答案的值,看能不能在 ...

  8. hiho一下 第三十八周 二分答案

    题目链接:http://hihocoder.com/contest/hiho38/problem/1 ,挺难想的解题思路,好题. 按照提示的算法来: 我们需要找什么? 在这个题目中我们需要找的是路径最 ...

  9. [bzoj2806][Ctsc2012]Cheat(后缀自动机(SAM)+二分答案+单调队列优化dp)

    偷懒直接把bzoj的网页内容ctrlcv过来了 2806: [Ctsc2012]Cheat Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1943   ...

随机推荐

  1. WPF中矢量图标库

    https://www.iconfont.cn/search/index?searchType=icon&q=人员

  2. 对于无法激活的系统—使用rearm命令延长试用期

    1.首先安装后,有一个30天的使用期. 2.在30天试用期即将结束时,用rearm命令后重启电脑,剩余时间又回复到30天.微软官方文档中声明该命令只能重复使用3次,也说是说总共可以免费体验120天. ...

  3. Bootstrap历练实例:按钮(Button)插件单个切换

    单个切换 如需激活单个按钮的切换(即改变按钮的正常状态为按压状态,反之亦然),只需向 button 元素添加 data-toggle="button" 作为其属性即可,如下面实例所 ...

  4. vue:vue router学习小结

    序:本篇内容主要侧重对前端路由的理解,以vue的官方路由作为载体,进行一个简单介绍. 一.路由历史: 最早开始的时候,项目开发使用的是SSR,即服务端渲染.这个时候刷新页面,服务器返回的是全部的htm ...

  5. Ubuntu解决winscp连接不上虚拟机问题

    前几天在配置虚拟机的时候,尝试用winscp连接Ubuntu,结果连接被拒绝.原因:Ubuntu的ssh服务需要自己安装和启动,在没启动之前,是无法连接上去的 解决方案: 我们可以输入:ssh loc ...

  6. 前端-带header和footer的双栏布局

    目标是实现如上图带header和footer的双栏布局,其中右侧sidebar是固定宽度,左侧content是自适应: https://www.zybuluo.com/dengzhirong/note ...

  7. Java poi 导出Excel并下载到客户端

    Maven配置,包含了其他文件格式的依赖,就全贴出来了 <dependency> <groupId>org.apache.poi</groupId> <art ...

  8. 八、Shell test 命令

    Shell test 命令 Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值.字符和文件三个方面的测试. 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt ...

  9. k8s的service简述

    k8s向集群外部暴露端口的3种方式: 1.service->nodePort :仅暴露一个宿主机端口,用于集群外部访问,因为此操作被写入各个节点的iptables或ipvs规则当中,可以用任意一 ...

  10. 微信小程序第3课 目录结构及小知识点

    目录 目录结构 安装包下载地址 一.pages目录介绍 二.index目录介绍 index.js(相当JavaScript文件,必不可少的) index.json(可以不需要) index.wxml( ...