【概率dp 高斯消元】bzoj3270: 博物馆
一类成环概率dp的操作模式
Description
Input
Output
Sample Input
1 2
0.5
0.5
Sample Output
HINT
对于100%的数据有 n <= 20,n-1 <= m <= n(n-1)/2
题目分析
记$f[i][j]$为两人分别在$i$和$j$的概率,$u,v$为分别与$i,j$相连的点,那么有$$f[i][j]= \begin{cases} \sum \frac{f[u][v]*(1-p[u])*(1-p[v]))}{deg[u]*deg[v]}& \text{(u!=i&&v!=j)}\\\sum \frac{f[u][v]*(1-p[u])*p[v])}{deg[u]*deg[v]}& \text{(u!=i&&v=j)}\\\sum \frac{f[u][v]*p[u]*(1-p[v]))}{deg[u]*deg[v]}& \text{(u=i&&v!=j)}\\\sum \frac{f[u][v]*(1-p[u]*(1-p[v]))}{deg[u]*deg[v]}& \text{(u=i&&v=j)}\end{cases}$$
由于这里dp的关系成环,不能够直接转移,所以要使用高斯消元。由此共有$n^2$个状态,即$n^2$个未知量。故用$id[i][j]$来表示$f[i][j]$,就可方便地把这些未知量的关系用矩阵表示出来。
需要注意的是,初始$f[S][T]$的概率为1,不过后面又会有经过它的概率,所以在计算时需要考虑其初始概率。这里算是一个概率dp的奇怪的地方:最终$f[S][T]>1$。
再者是处理的一个小技巧:添一条自边便于处理。
#include<bits/stdc++.h>
const int maxn = ; int n,m,tot,S,T,deg[maxn],id[maxn][maxn];
double out[maxn],p[maxn],ans[maxn],mp[maxn][maxn];
int G[maxn][maxn]; void Gauss(int n)
{
double bse;
for (int i=, r; i<=n; i++)
{
r = i;
for (int j=i+; j<=n; j++)
if (fabs(mp[j][i]) > fabs(mp[r][i])) r = j;
if (r!=i) std::swap(mp[i], mp[r]);
bse = mp[i][i];
for (int j=i; j<=n+; j++) mp[i][j] /= bse;
for (int j=i+; j<=n; j++)
{
bse = mp[j][i];
for (int k=i; k<=n+; k++)
mp[j][k] -= bse*mp[i][k];
}
}
ans[n] = mp[n][n+];
for (int i=n-; i; i--)
{
ans[i] = mp[i][n+];
for (int j=i+; j<=n; j++) ans[i] -= ans[j]*mp[i][j];
}
}
int main()
{
scanf("%d%d%d%d",&n,&m,&S,&T);
tot = n*n;
for (int i=,x,y; i<=m; i++)
{
scanf("%d%d",&x,&y), ++deg[x], ++deg[y];
G[x][++G[x][]] = y, G[y][++G[y][]] = x;
}
for (int i=; i<=n; i++)
{
scanf("%lf",&p[i]);
G[i][++G[i][]] = i;
out[i] = (1.0-p[i])/(1.0*deg[i]);
}
for (int i=, t=; i<=n; i++)
for (int j=; j<=n; j++)
id[i][j] = ++t;
mp[id[S][T]][tot+] = -;
for (int i=; i<=n; i++)
for (int j=; j<=n; j++)
{
--mp[id[i][j]][id[i][j]];
for (int l=; l<=G[i][]; l++)
for (int r=; r<=G[j][]; r++)
{
int u = G[i][l], v = G[j][r];
if (u==v) continue;
if (u==i&&v==j) mp[id[i][j]][id[i][j]] += p[i]*p[j];
if (u!=i&&v!=j) mp[id[i][j]][id[u][v]] += out[u]*out[v];
if (u==i&&v!=j) mp[id[i][j]][id[u][v]] += p[u]*out[v];
if (u!=i&&v==j) mp[id[i][j]][id[u][v]] += out[u]*p[v];
}
}
Gauss(tot);
for (int i=; i<=n; i++) printf("%.6lf ",ans[id[i][i]]);
return ;
}
看到有网上有些博客说,高斯消元这里$mp[id[i][j]][id[u][v]]$是指$id[i][j]$状态转移到$id[u][v]$状态的概率,这个说法其实是不对的。$id[i][j]$实际上不过是和常规高斯消元一样,代表处理第几条方程;至于$id[u][v]$则表示当前这条方程中的$f[u][v]$;所以$mp[id[i][j]][id[u][v]]$是指第$id[i][j]$条方程中,第$id[u][v]$个未知量的系数。
END
【概率dp 高斯消元】bzoj3270: 博物馆的更多相关文章
- BZOJ3270 博物館 概率DP 高斯消元
BZOJ3270 博物館 概率DP 高斯消元 @(XSY)[概率DP, 高斯消元] Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博 ...
- BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元
BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...
- LightOJ - 1151概率dp+高斯消元
概率dp+高斯消元 https://vjudge.net/problem/LightOJ-1151 题意:刚开始在1,要走到100,每次走的距离1-6,超过100重来,有一些点可能有传送点,可以传送到 ...
- 【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元
题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两 ...
- BZOJ 3270: 博物馆 [概率DP 高斯消元]
http://www.lydsy.com/JudgeOnline/problem.php?id=3270 题意:一张无向图,一开始两人分别在$x$和$y$,每一分钟在点$i$不走的概率为$p[i]$, ...
- 【BZOJ3640】JC的小苹果 概率DP+高斯消元
[BZOJ3640]JC的小苹果 Description 让我们继续JC和DZY的故事. “你是我的小丫小苹果,怎么爱你都不嫌多!” “点亮我生命的火,火火火火火!” 话说JC历经艰辛来到了城市B,但 ...
- BZOJ 3270 博物馆 ——概率DP 高斯消元
用$F(i,j)$表示A在i,B在j的概率. 然后很容易列出转移方程. 然后可以高斯消元了! 被一个问题困扰了很久,为什么起始点的概率要加上1. (因为其他博客上都是直接写成-1,雾) 考虑初始状态是 ...
- 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 682 Solved: 384[Submit][Stat ...
- BZOJ 3640: JC的小苹果 [概率DP 高斯消元 矩阵求逆]
3640: JC的小苹果 题意:求1到n点权和\(\le k\)的概率 sengxian orz的题解好详细啊 容易想到\(f[i][j]\)表示走到i点权为j的概率 按点权分层,可以DP 但是对于\ ...
随机推荐
- Nacos深入浅出(四)
private void executeAsyncInvoke() { while (!queue.isEmpty()) { NotifySingleTask task = queue.poll(); ...
- Jar命令用法
JAR文件 JAR文件 全称:Java Archive File , 意思是Java档案文件.通常JAR文件是一种压缩文件,与常见的ZIP压缩文件兼容,通常被称为JAR包. JAR文件和ZIP文件的区 ...
- 测试REST Web服务
EST Web服务的测试计划 线程组 HTTP请求 与任何Jmeter测试一样,我们首先需要创建一个线程组以及一个HTTP请求采样器. 如果您现在运行测试,则可能会收到错误,响应代码为415,响应消息 ...
- TaskFactory单例模式利用xml
/** * * Copyright (c) 1995-2009 Wonders Information Co.,Ltd. * 1518 Lianhang Rd,Shanghai 201112.P.R. ...
- 线程池(4)Executors.newScheduledThreadPool-只执行1次
例子1:延迟3秒后,只执行1次 ScheduledExecutorService es = Executors.newScheduledThreadPool(5); log.info("开始 ...
- NET Core学习方式(视频)
NET Core学习方式(视频) ASP.NET Core都2.0了,它的普及还是不太好.作为一个.NET的老司机,我觉得.NET Core给我带来了很多的乐趣.Linux, Docker, Clou ...
- java课后思考问题(八)
1.请阅读并运行AboutException.java示例,然后通过后面的几页PPT了解Java中实现异常处理的基础知识. (1)import javax.swing.*; class AboutEx ...
- Maven--setting详解
settings.xml有什么用? 如果在Eclipse中使用过Maven插件,想必会有这个经验:配置settings.xml文件的路径. settings.xml文件是干什么的,为什么要配置它呢? ...
- nginx配置SSL证书实现https服务
在前面一篇文章中,使用openssl生成了免费证书 后,我们现在使用该证书来实现我们本地node服务的https服务需求.假如我现在node基本架构如下: |----项目 | |--- static ...
- 序列化流与反序列化流,打印流,工具类commons-IO
1序列化流与反序列化流 用于从流中读取对象的操作流 ObjectInputStream 称为 反序列化流 用于向流中写入对象的操作流 ObjectOutputStream 称为 序列化流 特 ...