Factors that affect the performance of a tracing algorithm

1 Illumination variation
2 Occlusion
3 Background clutters



Main modules for object tracking

1 Target representation scheme
2 Search mechanism
3 Model update



Evaluation Methodology

1 Precison plot:
The percentage of frames whose estimated location is within the given threshold distance of the ground truth.
x coordinate: threshold

2 Success plot: 
The ratios of successful frames at the thresholds varied from 0 to 1
x coordinate: threshold

3 Robustness Evaluation
A OPE: one-pass evaluation
B TRE temporal robustness evaluation
C SRE spatial robustness evaluation




Overall Performance

详见论文
1  TLD performs well in long sequences with a redetection module 
2 Struck only estimates the location of target and does not handle scale variation
3 Sparse representations are effectivemodels to account for appearance change (e.g., occlusion).
4 Local sparse representations are more effective than the ones with holistic sparse

templates.
5 It indicates the alignmentpooling technique adopted by ASLA is more robust to misalignments and background clutters.
6 When an object moves fast, dense sampling based trackers (e.g., Struck, TLD and CXT) perform much better than others
7 On the OCC subset, the Struck, SCM, TLD, LSK and ASLA methods outperform others. The results suggest that structured learning and local sparse representations are effective in dealing with occlusions.
8 On the SV subset,ASLA, SCM and Struck perform best. The results show that

trackers with affine motion models (e.g., ASLA and SCM) often handle scale variation better than others that are designed to account for only translational motion with a few exceptions such as Struck
9 The performance of TLD, CXT, DFT and LOT decreases with the increase of

initialization scale. This indicates these trackers are more sensitive to background clutters. 
10 On the other hand, some trackers perform well or even better when the initial bounding box is enlarged, such as Struck, OAB, SemiT, and BSBT. This indicates that the Haar-like features are somewhat robust to background
clutters due to the summation operations when computing features. Overall, Struck is less sensitive to scale variation than other well-performing methods.
11 Some trackers perform better when the scale factor is smaller, such as L1APG, MTT, LOT and CPF



Dataset





相应站点





Online Object Tracking: A Benchmark 论文笔记的更多相关文章

  1. Online Object Tracking: A Benchmark 论文笔记(转)

    转自:http://blog.csdn.net/lanbing510/article/details/40411877 有博主翻译了这篇论文:http://blog.csdn.net/roamer_n ...

  2. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  3. CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结

    本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...

  4. Struck: Structrued Output Tracking with Kernels 论文笔记

    Main idear Treat the tracking problem as a classification task and use online learning techniques to ...

  5. Learning Rich Features from RGB-D Images for Object Detection and Segmentation论文笔记

    相关工作: 将R-CNN推广到RGB-D图像,引入一种新的编码方式来捕获图像中像素的地心姿态,并且这种新的编码方式比单纯使用深度通道有了明显的改进. 我们建议在每个像素上用三个通道编码深度图像:水平视 ...

  6. Online Object Tracking: A Benchmark 翻译

    来自http://www.aichengxu.com/view/2426102 摘要 目标跟踪是计算机视觉大量应用中的重要组成部分之一.近年来,尽管在分享源码和数据集方面的努力已经取得了许多进展,开发 ...

  7. [Object Tracking] Overview of algorithms for Object Tracking

    From: https://www.zhihu.com/question/26493945 可以载入史册的知乎贴 目标跟踪之NIUBILITY的相关滤波 - 专注于分享目标跟踪中非常高效快速的相关滤波 ...

  8. Correlation Filter in Visual Tracking系列一:Visual Object Tracking using Adaptive Correlation Filters 论文笔记

    Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filt ...

  9. 论文笔记之:Fully-Convolutional Siamese Networks for Object Tracking

    gansh Fully-Convolutional Siamese Network for Object Tracking 摘要:任意目标的跟踪问题通常是根据一个物体的外观来构建表观模型.虽然也取得了 ...

随机推荐

  1. JNI学习积累之一 ---- 常用函数大全

    主要资料来源: 百度文库的<JNI常用函数> . 同时对其加以了补充 . 要素  :1. 该函数大全是基于C语言方式的,对于C++方式可以直接转换 ,例如,对于生成一个jstring类型的 ...

  2. java selenium启动火狐浏览器报错:Cannot find firefox binary in PATH. Make sure firefox is installed. OS appears to be: VISTA Build info: version: '3.8.1', revision: '6e95a6684b', time: '2017-12-01T19:05:14.666Z

    Cannot find firefox binary in PATH. Make sure firefox is installed. OS appears to be: VISTA Build in ...

  3. Spring Boot (17) 发送邮件

    添加依赖 <!--发送邮件 --> <dependency> <groupId>org.springframework.boot</groupId> & ...

  4. 5.12redis

    Window配置Redis环境和简单使用 一.关于Redis Redis是一个开源(BSD许可),内存存储的数据结构服务器,可用作数据库,高速缓存和消息队列代理.它支持字符串.哈希表.列表.集合.有序 ...

  5. HTML 5概述

    HTML语言是一种简易的文件交换标准,用于物理的文件结构,它旨在定义文件内的对象和描述文件的逻辑结构,而并不定义文件的显示.由于HTML所描述的文件具有极高的适应性,所以特别适合于WWW的出版环境. ...

  6. sql server 还原数据库,数据库提示正在还原中的处理办法

      还原数据库时,提示还原成功,可是数据库列表中该数据库显示正在还原中: 执行此命令即可: RESTORE DATABASE EnterPriseBuilding WITH RECOVERY 了解SQ ...

  7. jenkins如何实现重新发布历史构建记录里的版本

    Jenkins以前打包都会将打出的拷贝放到历史版本里放到Daily_Result里,昨天不只是误操作还是系统问题,误将一个历史版本的包删掉了,而且这个包是之前比较稳定的一个版本,需要重新给客户发,所以 ...

  8. SiftGPU:编译SiftGPU出现问题-无法解析的外部符号 glutInit

    OpenCV出现了ORB特征和SURF的GPU版本, 参考:opencv上gpu版surf特征点与orb特征点提取及匹配实例至于使用什么并行API暂时没有探究. 但没有发现OpenCV-SIFT的GP ...

  9. jq 禁用复选框 和输入框

    $('input').attr("readonly", ""); $('input').attr("disabled", "fal ...

  10. JAVA中浅复制与深复制

    1.浅复制与深复制概念⑴浅复制(浅克隆)被复制对象的所有变量都含有与原来的对象相同的值,而所有的对其他对象的引用仍然指向原来的对象.换言之,浅复制仅仅复制所考虑的对象,而不复制它所引用的对象. ⑵深复 ...