Factors that affect the performance of a tracing algorithm

1 Illumination variation
2 Occlusion
3 Background clutters



Main modules for object tracking

1 Target representation scheme
2 Search mechanism
3 Model update



Evaluation Methodology

1 Precison plot:
The percentage of frames whose estimated location is within the given threshold distance of the ground truth.
x coordinate: threshold

2 Success plot: 
The ratios of successful frames at the thresholds varied from 0 to 1
x coordinate: threshold

3 Robustness Evaluation
A OPE: one-pass evaluation
B TRE temporal robustness evaluation
C SRE spatial robustness evaluation




Overall Performance

详见论文
1  TLD performs well in long sequences with a redetection module 
2 Struck only estimates the location of target and does not handle scale variation
3 Sparse representations are effectivemodels to account for appearance change (e.g., occlusion).
4 Local sparse representations are more effective than the ones with holistic sparse

templates.
5 It indicates the alignmentpooling technique adopted by ASLA is more robust to misalignments and background clutters.
6 When an object moves fast, dense sampling based trackers (e.g., Struck, TLD and CXT) perform much better than others
7 On the OCC subset, the Struck, SCM, TLD, LSK and ASLA methods outperform others. The results suggest that structured learning and local sparse representations are effective in dealing with occlusions.
8 On the SV subset,ASLA, SCM and Struck perform best. The results show that

trackers with affine motion models (e.g., ASLA and SCM) often handle scale variation better than others that are designed to account for only translational motion with a few exceptions such as Struck
9 The performance of TLD, CXT, DFT and LOT decreases with the increase of

initialization scale. This indicates these trackers are more sensitive to background clutters. 
10 On the other hand, some trackers perform well or even better when the initial bounding box is enlarged, such as Struck, OAB, SemiT, and BSBT. This indicates that the Haar-like features are somewhat robust to background
clutters due to the summation operations when computing features. Overall, Struck is less sensitive to scale variation than other well-performing methods.
11 Some trackers perform better when the scale factor is smaller, such as L1APG, MTT, LOT and CPF



Dataset





相应站点





Online Object Tracking: A Benchmark 论文笔记的更多相关文章

  1. Online Object Tracking: A Benchmark 论文笔记(转)

    转自:http://blog.csdn.net/lanbing510/article/details/40411877 有博主翻译了这篇论文:http://blog.csdn.net/roamer_n ...

  2. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  3. CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结

    本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...

  4. Struck: Structrued Output Tracking with Kernels 论文笔记

    Main idear Treat the tracking problem as a classification task and use online learning techniques to ...

  5. Learning Rich Features from RGB-D Images for Object Detection and Segmentation论文笔记

    相关工作: 将R-CNN推广到RGB-D图像,引入一种新的编码方式来捕获图像中像素的地心姿态,并且这种新的编码方式比单纯使用深度通道有了明显的改进. 我们建议在每个像素上用三个通道编码深度图像:水平视 ...

  6. Online Object Tracking: A Benchmark 翻译

    来自http://www.aichengxu.com/view/2426102 摘要 目标跟踪是计算机视觉大量应用中的重要组成部分之一.近年来,尽管在分享源码和数据集方面的努力已经取得了许多进展,开发 ...

  7. [Object Tracking] Overview of algorithms for Object Tracking

    From: https://www.zhihu.com/question/26493945 可以载入史册的知乎贴 目标跟踪之NIUBILITY的相关滤波 - 专注于分享目标跟踪中非常高效快速的相关滤波 ...

  8. Correlation Filter in Visual Tracking系列一:Visual Object Tracking using Adaptive Correlation Filters 论文笔记

    Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filt ...

  9. 论文笔记之:Fully-Convolutional Siamese Networks for Object Tracking

    gansh Fully-Convolutional Siamese Network for Object Tracking 摘要:任意目标的跟踪问题通常是根据一个物体的外观来构建表观模型.虽然也取得了 ...

随机推荐

  1. .net中的WebForm引人MVC的控制器

    当下.net中比较火的模式MVC模式,说实话对于菜鸟的我还没有遇到一个比较健全的MVC模式的项目也是比较遗憾.偶然间在网上看到WebForm实现MVC中的模式(主要是控制器...)就学习了一波,下面是 ...

  2. Lua Time

    -- local getTime = os.date(“%c”); -- %a abbreviated weekday name (e.g., Wed)-- %A full weekday name ...

  3. Java接口中的成员变量为什么必须声明为public static final?

    我想对于每个Java程序员来说,接口都不陌生,接口中的方法也经常使用.而接口中的成员变量,就显得用得少一点,而对于成员变量为什么必须声明为public static final,可能就更不清楚了,而且 ...

  4. java解析注解的简单例子

    代码是根据慕课网的教程写的. 自定义类的注解: package com.immoc.test; import java.lang.annotation.Documented; import java. ...

  5. OpenCV:OpenCV目标检测Hog+SWindow源代码分析

    参考文章:OpenCV中的HOG+SVM物体分类 此文主要描述出HOG分类的调用堆栈. 使用OpenCV作图像检测, 使用HOG检测过程,其中一部分源代码如下: 1.HOG 检测底层栈的检测计算代码: ...

  6. AOP注解形式 整合memcache

    1.首先自定义注解 :添加缓存 @Target(ElementType.METHOD)@Retention(RetentionPolicy.RUNTIME)@Documented@Inheritedp ...

  7. revit二次开发之族的类型参数与实例参数的转换

    1背景小伙伴在做revit二次开发的时候,可能需要在族环境中将族的类型参数与实例参数相互转换. 2思路1.使用族管理器FamilyManager,参见注释12.首先获取需要转换的参数(单个与批量),参 ...

  8. C#中为什么字段设为只读依然可以在构造函数中为它赋值

    因为只读是为了保证在类的 实例 被 创建后 ,当前属性不能被改变 构造函数中实例还没创建完成,所以依然可以改变

  9. PAT_A1140#Look-and-say Sequence

    Source: PAT A1140 Look-and-say Sequence (20 分) Description: Look-and-say sequence is a sequence of i ...

  10. Jquery向页面append新元素之后,如何解决事件的绑定问题?

    今天有get到一个新知识点,就是当我们向页面添加新的元素之后,加载之前的函数方法就对新元素失效了,下面我来说说如何解决这个问题的? 我先看jq api文档没有找到方法,无果只好到网上找些资料,果然找到 ...