HDU 1532||POJ1273:Drainage Ditches(最大流)
pid=1532">Drainage Ditches
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8574 Accepted Submission(s): 3991
clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.
1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to
Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.
5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10
50
题目大意:
就是因为下大雨的时候约翰的农场就会被雨水给淹没。无奈下约翰不得不修建水沟,并且是网络水沟,并且聪明的约翰还控制了水的流速,本题就是让你求出最大流速,无疑要运用到求最大流了。
题中m为水沟数。n为水沟的顶点,接下来Si,Ei,Ci各自是水沟的起点,终点以及其容量。求源点1到终点n的最大流速。
注意重边
</pre></p><pre name="code" class="cpp">
EdmondsKarp算法写的:
邻接矩阵:
</pre><pre name="code" class="cpp">
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
#define INF 0x3f3f3f3f using namespace std; const int M = 1000 + 50;
int n, m;
int r[M][M];
int pre[M];// 记录结点i的前向结点为pre[i]
bool vist[M];// 记录结点i是否已訪问 bool BFS(int s, int t) //推断是否存在增广路
{
queue<int>que;
memset(pre, 0, sizeof(pre));
memset(vist, false, sizeof(vist));
pre[s] = s;
vist[s] = true;
que.push(s);
int p;
while( !que.empty() )
{
p = que.front();
que.pop();
for(int i=1; i<=n; i++)
{
if(r[p][i]>0 && !vist[i])
{
pre[i]=p;
vist[i]=true;
if( i==t )
return true;
que.push(i);
}
}
}
return false;
} int EK(int s, int t)
{
int maxflow = 0;
while( BFS(s, t) )
{
int d = INF;
// 若有增广路径,则找出最小的delta
for(int i=t; i!=s; i=pre[i])
d = min(d, r[ pre[i] ][i]);
// 这里是反向边
for(int i=t; i!=s; i=pre[i])
{
r[ pre[i] ][i] -= d;//方向边
r[i][ pre[i] ] += d;//方向边
}
maxflow += d;
}
return maxflow;
} int main()
{
while(cin>>m>>n)
{
memset(r, 0, sizeof(r));
for(int i=0; i<m; i++)
{
int from, to, rap;
scanf("%d%d%d", &from, &to, &rap);
r[from][to] += rap;
}
cout<<EK(1, n)<<endl;
}
return 0;
}
邻接表(紫书上的模板):
#include<cstdio> #include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue> using namespace std; #define INF 0x3f3f3f3f;
const int MAXN = 1000 + 50; struct Edge
{
int from, to, cap, flow;
Edge (int u, int v, int c, int f):from(u), to(v), cap(c), flow(f) {}
}; struct EdmondsKarp
{
int n, m;
vector<Edge> edges;
vector<int> G[MAXN];
int a[MAXN];
int p[MAXN]; void init(int n)
{
for(int i=0; i<n; i++)
G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int cap)
{
edges.push_back( Edge(from, to, cap, 0) );
edges.push_back( Edge(to, from, 0, 0) );
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} int Maxflow(int s, int t)
{
int flow = 0;
for( ; ; )
{
memset(a, 0, sizeof(a));
queue<int> Q;
Q.push(s);
a[s]=INF;
while( !Q.empty() )
{
int x = Q.front();
Q.pop();
for(int i=0; i<G[x].size(); i++)
{
Edge& e = edges[ G[x][i] ];
if( !a[e.to] && e.cap > e.flow )
{
p[e.to] = G[x][i];
a[e.to] = min(a[x], e.cap-e.flow);
Q.push(e.to);
}
}
if( a[t] ) break;
}
if( ! a[t] ) break;
for(int u=t; u!=s; u=edges[ p[u] ].from )
{
edges[ p[u] ].flow += a[t];
edges[ p[u]^1 ].flow -= a[t];
}
flow += a[t];
}
return flow;
} }; int main()
{
EdmondsKarp T;
int n, m;
while(scanf("%d%d", &m, &n) !=EOF)
{
T.init(n+1);
for(int i=0; i<m; i++)
{
int a1, a2, a3;
scanf("%d%d%d", &a1, &a2, &a3);
T.AddEdge(a1, a2, a3);
}
printf("%d\n", T.Maxflow(1, n));
} return 0;
}
Dinic算法:
#include <cstdio>
#include <cstring>
#include <queue>
#define MAXN 205
#define INF 1000000000
using namespace std;
struct Edge {
int from, to, cap, flow;
}; struct Dinic {
int n, m, s, t;
vector<Edge> edges; //边表.edges[e]和edges[e^1]互为反向弧
vector<int> G[MAXN]; //邻接表。G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[MAXN]; //BFS使用
int d[MAXN]; //从起点到i的距离
int cur[MAXN]; //当前弧指针 void ClearAll(int n) {
for (int i = 0; i < n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int cap) {
edges.push_back((Edge) {from, to, cap, 0});
edges.push_back((Edge) {to, from, 0, 0});
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
} bool BFS() {//使用BFS计算出每个点在残量网络中到t的最短距离d.
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(s);
vis[s] = 1;
d[s] = 0;
while (!Q.empty()) {
int x = Q.front(); Q.pop();
for (int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if (!vis[e.to] && e.cap > e.flow) { //仅仅考虑残量网络中的弧
vis[e.to] = 1;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x, int a) {//使用DFS从S出发,沿着d值严格递减的顺序进行多路增广。
if (x == t || a == 0) return a;
int flow = 0, f;
for (int& i = cur[x]; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[G[x][i] ^ 1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
} int Maxflow(int s, int t) {
this->s = s; this->t = t;
int flow = 0;
while (BFS()) {
memset(cur, 0, sizeof(cur));
flow += DFS(s, INF);
}
return flow;
} };
Dinic g;
int main()
{
int n, m, i, a, b, c;
while (~scanf("%d%d", &m, &n)) {
g.ClearAll(n + 1);
for (i = 0; i < m; i++) {
scanf("%d%d%d", &a, &b, &c);
g.AddEdge(a, b, c);
}
int flow = g.Maxflow(1, n);
printf("%d\n", flow);
}
return 0;
}
HDU 1532||POJ1273:Drainage Ditches(最大流)的更多相关文章
- 【47.63%】【hdu 1532】Drainage Ditches
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s) ...
- poj-1273 Drainage Ditches(最大流基础题)
题目链接: Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 67475 Accepted ...
- POJ-1273 Drainage Ditches 最大流Dinic
Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 65146 Accepted: 25112 De ...
- POJ1273:Drainage Ditches(最大流入门 EK,dinic算法)
http://poj.org/problem?id=1273 Description Every time it rains on Farmer John's fields, a pond forms ...
- poj1273 Drainage Ditches (最大流板子
网络流一直没学,来学一波网络流. https://vjudge.net/problem/POJ-1273 题意:给定点数,边数,源点,汇点,每条边容量,求最大流. 解法:EK或dinic. EK:每次 ...
- [poj1273]Drainage Ditches(最大流)
解题关键:最大流裸题 #include<cstdio> #include<cstring> #include<algorithm> #include<cstd ...
- poj1273 Drainage Ditches Dinic最大流
Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 76000 Accepted: 2953 ...
- Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )
题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...
- POJ 1273 || HDU 1532 Drainage Ditches (最大流模型)
Drainage DitchesHal Burch Time Limit 1000 ms Memory Limit 65536 kb description Every time it rains o ...
随机推荐
- PHP动态函数处理
public class Student{ public function speek($name){ echo 'my name is '.$name; } } $method='speek'; $ ...
- VUE:项目的创建、编写、打包及规范检查
VUE:项目的创建.编写及打包 项目的创建 使用 vue-cli 创建模板项目(官方提供的脚手架工具) https://github.com/vuejs/vue-cli npm install -g ...
- 【Codeforces Round #476 (Div. 2) [Thanks, Telegram!] E】Short Code
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 先建立一棵字典树. 显然,某一些节点上会被打上标记. 问题就转化成求所有标记的深度的和的最小值了. (标记可以上移,但是不能在同一位 ...
- Jquery学习总结(3)——Jquery获取当前城市的天气信
Jquery代码: function findWeather() { var cityUrl = 'http://int.dpool.sina.com.cn/iplookup/iplookup ...
- Docker可视化管理工具对比(DockerUI、Shipyard、Rancher、Portainer)
1.前言 谈及docker,避免不了需要熟练的记住好多命令及其用法,对于熟悉shell.技术开发人员而言,还是可以接受的,熟练之后,命令行毕竟是很方便的,便于操作及脚本化.但对于命令行过敏.非技术人员 ...
- Android中Handler原理
Handler主要是主线程和子线程通信.一般子线程中做一些耗时操作做完之后通知主线程来改动UI. 实际上android系统在Activity启动或者状态变化等都是通过Handler机制实现的. 首先进 ...
- c# 获取一年中的周/根据一年中的第几周获取该周的开始日期与结束日期
/// <summary> /// 获取一年中的周 /// </summary> /// <param name="dt">日期</par ...
- m_Orchestrate learning system---四、多看参考文档很多事情很轻松就解决了
m_Orchestrate learning system---四.多看参考文档很多事情很轻松就解决了 一.总结 一句话总结:多看参考文档啊 1.面包屑导航如何实现? 1 <ol class=& ...
- xBIM 基础08 WeXplorer 简介
系列目录 [已更新最新开发文章,点击查看详细] 一.WeXplorer 简介 WeXplorer 是 XBIM 工具包的可视化部分,它使用预处理的 WexBIM 文件在 Web 上处理 IFC ...
- CDN(Content Distribution Network)概念
CDN的全称是Content Delivery Network,即内容分发网络.其基本思路是尽可能避开互联网上有可能影响数据传输速度和稳定性的瓶颈和环节,使内容传输的更快.更稳定.通过在网络各处放置节 ...