HDU 1532||POJ1273:Drainage Ditches(最大流)
pid=1532">Drainage Ditches
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8574 Accepted Submission(s): 3991
clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.
1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to
Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.
5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10
50
题目大意:
就是因为下大雨的时候约翰的农场就会被雨水给淹没。无奈下约翰不得不修建水沟,并且是网络水沟,并且聪明的约翰还控制了水的流速,本题就是让你求出最大流速,无疑要运用到求最大流了。
题中m为水沟数。n为水沟的顶点,接下来Si,Ei,Ci各自是水沟的起点,终点以及其容量。求源点1到终点n的最大流速。
注意重边
</pre></p><pre name="code" class="cpp">
EdmondsKarp算法写的:
邻接矩阵:
</pre><pre name="code" class="cpp">
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
#define INF 0x3f3f3f3f using namespace std; const int M = 1000 + 50;
int n, m;
int r[M][M];
int pre[M];// 记录结点i的前向结点为pre[i]
bool vist[M];// 记录结点i是否已訪问 bool BFS(int s, int t) //推断是否存在增广路
{
queue<int>que;
memset(pre, 0, sizeof(pre));
memset(vist, false, sizeof(vist));
pre[s] = s;
vist[s] = true;
que.push(s);
int p;
while( !que.empty() )
{
p = que.front();
que.pop();
for(int i=1; i<=n; i++)
{
if(r[p][i]>0 && !vist[i])
{
pre[i]=p;
vist[i]=true;
if( i==t )
return true;
que.push(i);
}
}
}
return false;
} int EK(int s, int t)
{
int maxflow = 0;
while( BFS(s, t) )
{
int d = INF;
// 若有增广路径,则找出最小的delta
for(int i=t; i!=s; i=pre[i])
d = min(d, r[ pre[i] ][i]);
// 这里是反向边
for(int i=t; i!=s; i=pre[i])
{
r[ pre[i] ][i] -= d;//方向边
r[i][ pre[i] ] += d;//方向边
}
maxflow += d;
}
return maxflow;
} int main()
{
while(cin>>m>>n)
{
memset(r, 0, sizeof(r));
for(int i=0; i<m; i++)
{
int from, to, rap;
scanf("%d%d%d", &from, &to, &rap);
r[from][to] += rap;
}
cout<<EK(1, n)<<endl;
}
return 0;
}
邻接表(紫书上的模板):
#include<cstdio> #include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue> using namespace std; #define INF 0x3f3f3f3f;
const int MAXN = 1000 + 50; struct Edge
{
int from, to, cap, flow;
Edge (int u, int v, int c, int f):from(u), to(v), cap(c), flow(f) {}
}; struct EdmondsKarp
{
int n, m;
vector<Edge> edges;
vector<int> G[MAXN];
int a[MAXN];
int p[MAXN]; void init(int n)
{
for(int i=0; i<n; i++)
G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int cap)
{
edges.push_back( Edge(from, to, cap, 0) );
edges.push_back( Edge(to, from, 0, 0) );
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} int Maxflow(int s, int t)
{
int flow = 0;
for( ; ; )
{
memset(a, 0, sizeof(a));
queue<int> Q;
Q.push(s);
a[s]=INF;
while( !Q.empty() )
{
int x = Q.front();
Q.pop();
for(int i=0; i<G[x].size(); i++)
{
Edge& e = edges[ G[x][i] ];
if( !a[e.to] && e.cap > e.flow )
{
p[e.to] = G[x][i];
a[e.to] = min(a[x], e.cap-e.flow);
Q.push(e.to);
}
}
if( a[t] ) break;
}
if( ! a[t] ) break;
for(int u=t; u!=s; u=edges[ p[u] ].from )
{
edges[ p[u] ].flow += a[t];
edges[ p[u]^1 ].flow -= a[t];
}
flow += a[t];
}
return flow;
} }; int main()
{
EdmondsKarp T;
int n, m;
while(scanf("%d%d", &m, &n) !=EOF)
{
T.init(n+1);
for(int i=0; i<m; i++)
{
int a1, a2, a3;
scanf("%d%d%d", &a1, &a2, &a3);
T.AddEdge(a1, a2, a3);
}
printf("%d\n", T.Maxflow(1, n));
} return 0;
}
Dinic算法:
#include <cstdio>
#include <cstring>
#include <queue>
#define MAXN 205
#define INF 1000000000
using namespace std;
struct Edge {
int from, to, cap, flow;
}; struct Dinic {
int n, m, s, t;
vector<Edge> edges; //边表.edges[e]和edges[e^1]互为反向弧
vector<int> G[MAXN]; //邻接表。G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[MAXN]; //BFS使用
int d[MAXN]; //从起点到i的距离
int cur[MAXN]; //当前弧指针 void ClearAll(int n) {
for (int i = 0; i < n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int cap) {
edges.push_back((Edge) {from, to, cap, 0});
edges.push_back((Edge) {to, from, 0, 0});
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
} bool BFS() {//使用BFS计算出每个点在残量网络中到t的最短距离d.
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(s);
vis[s] = 1;
d[s] = 0;
while (!Q.empty()) {
int x = Q.front(); Q.pop();
for (int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if (!vis[e.to] && e.cap > e.flow) { //仅仅考虑残量网络中的弧
vis[e.to] = 1;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x, int a) {//使用DFS从S出发,沿着d值严格递减的顺序进行多路增广。
if (x == t || a == 0) return a;
int flow = 0, f;
for (int& i = cur[x]; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[G[x][i] ^ 1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
} int Maxflow(int s, int t) {
this->s = s; this->t = t;
int flow = 0;
while (BFS()) {
memset(cur, 0, sizeof(cur));
flow += DFS(s, INF);
}
return flow;
} };
Dinic g;
int main()
{
int n, m, i, a, b, c;
while (~scanf("%d%d", &m, &n)) {
g.ClearAll(n + 1);
for (i = 0; i < m; i++) {
scanf("%d%d%d", &a, &b, &c);
g.AddEdge(a, b, c);
}
int flow = g.Maxflow(1, n);
printf("%d\n", flow);
}
return 0;
}
HDU 1532||POJ1273:Drainage Ditches(最大流)的更多相关文章
- 【47.63%】【hdu 1532】Drainage Ditches
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s) ...
- poj-1273 Drainage Ditches(最大流基础题)
题目链接: Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 67475 Accepted ...
- POJ-1273 Drainage Ditches 最大流Dinic
Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 65146 Accepted: 25112 De ...
- POJ1273:Drainage Ditches(最大流入门 EK,dinic算法)
http://poj.org/problem?id=1273 Description Every time it rains on Farmer John's fields, a pond forms ...
- poj1273 Drainage Ditches (最大流板子
网络流一直没学,来学一波网络流. https://vjudge.net/problem/POJ-1273 题意:给定点数,边数,源点,汇点,每条边容量,求最大流. 解法:EK或dinic. EK:每次 ...
- [poj1273]Drainage Ditches(最大流)
解题关键:最大流裸题 #include<cstdio> #include<cstring> #include<algorithm> #include<cstd ...
- poj1273 Drainage Ditches Dinic最大流
Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 76000 Accepted: 2953 ...
- Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )
题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...
- POJ 1273 || HDU 1532 Drainage Ditches (最大流模型)
Drainage DitchesHal Burch Time Limit 1000 ms Memory Limit 65536 kb description Every time it rains o ...
随机推荐
- Mysql字段合并
现有数据 合并字段显示:利用GROUP_CONCAT(course,":","score") 严格区分大小写!GROUP_CONCAT 复制代码 SELECT ...
- web前端开发技术栈分析图
- H5知识点
一.总体变化 1.H5文档结构 <!DOCTYPE html> <html> <head> <title> 这是标题 </title> ...
- POJ 3695
可以用容斥原理来求.求两个矩形的并的时候可以使用条件 x1=max(p.x1,q.x1);y1=max(p.y1,q.y1);x2=min(p.x2,q.x2);y2=min(p.y2,q.y2); ...
- [Angular + Unit Testing] Mock HTTP Requests made with Angular’s HttpClient in Unit Tests
In a proper unit test we want to isolate external dependencies as much as possible to guarantee a re ...
- [Angular] Set Metadata in HTTP Headers with Angular HttpHeaders
Besides sending (or requesting) the actual data to the server API, there’s also often the need to se ...
- stl之hash_map
- 从头认识Spring-3.4 简单的AOP日志实现-扩展添加检查订单功能,以便记录并检測输入的參数
这一章节我们再上一个章节的基础上加上一个检查订单功能 1.domain 蛋糕类: package com.raylee.my_new_spring.my_new_spring.ch03.topic_1 ...
- elasticsearch index 之 put mapping
elasticsearch index 之 put mapping mapping机制使得elasticsearch索引数据变的更加灵活,近乎于no schema.mapping可以在建立索引时设 ...
- Java 定制工具库 —— Print(import static)
创建自己的工具库以减少或消除重复的程序代码.例如,我们在Print类中,对常常用到的System.out.println()封装调用以减少输入负担.这样,我们在使用该类时,可以用一个更具可读性的 im ...