HDU 1532||POJ1273:Drainage Ditches(最大流)
pid=1532">Drainage Ditches
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8574 Accepted Submission(s): 3991
clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.
1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to
Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.
5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10
50
题目大意:
就是因为下大雨的时候约翰的农场就会被雨水给淹没。无奈下约翰不得不修建水沟,并且是网络水沟,并且聪明的约翰还控制了水的流速,本题就是让你求出最大流速,无疑要运用到求最大流了。
题中m为水沟数。n为水沟的顶点,接下来Si,Ei,Ci各自是水沟的起点,终点以及其容量。求源点1到终点n的最大流速。
注意重边
</pre></p><pre name="code" class="cpp">
EdmondsKarp算法写的:
邻接矩阵:
</pre><pre name="code" class="cpp">
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
#define INF 0x3f3f3f3f using namespace std; const int M = 1000 + 50;
int n, m;
int r[M][M];
int pre[M];// 记录结点i的前向结点为pre[i]
bool vist[M];// 记录结点i是否已訪问 bool BFS(int s, int t) //推断是否存在增广路
{
queue<int>que;
memset(pre, 0, sizeof(pre));
memset(vist, false, sizeof(vist));
pre[s] = s;
vist[s] = true;
que.push(s);
int p;
while( !que.empty() )
{
p = que.front();
que.pop();
for(int i=1; i<=n; i++)
{
if(r[p][i]>0 && !vist[i])
{
pre[i]=p;
vist[i]=true;
if( i==t )
return true;
que.push(i);
}
}
}
return false;
} int EK(int s, int t)
{
int maxflow = 0;
while( BFS(s, t) )
{
int d = INF;
// 若有增广路径,则找出最小的delta
for(int i=t; i!=s; i=pre[i])
d = min(d, r[ pre[i] ][i]);
// 这里是反向边
for(int i=t; i!=s; i=pre[i])
{
r[ pre[i] ][i] -= d;//方向边
r[i][ pre[i] ] += d;//方向边
}
maxflow += d;
}
return maxflow;
} int main()
{
while(cin>>m>>n)
{
memset(r, 0, sizeof(r));
for(int i=0; i<m; i++)
{
int from, to, rap;
scanf("%d%d%d", &from, &to, &rap);
r[from][to] += rap;
}
cout<<EK(1, n)<<endl;
}
return 0;
}
邻接表(紫书上的模板):
#include<cstdio> #include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue> using namespace std; #define INF 0x3f3f3f3f;
const int MAXN = 1000 + 50; struct Edge
{
int from, to, cap, flow;
Edge (int u, int v, int c, int f):from(u), to(v), cap(c), flow(f) {}
}; struct EdmondsKarp
{
int n, m;
vector<Edge> edges;
vector<int> G[MAXN];
int a[MAXN];
int p[MAXN]; void init(int n)
{
for(int i=0; i<n; i++)
G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int cap)
{
edges.push_back( Edge(from, to, cap, 0) );
edges.push_back( Edge(to, from, 0, 0) );
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} int Maxflow(int s, int t)
{
int flow = 0;
for( ; ; )
{
memset(a, 0, sizeof(a));
queue<int> Q;
Q.push(s);
a[s]=INF;
while( !Q.empty() )
{
int x = Q.front();
Q.pop();
for(int i=0; i<G[x].size(); i++)
{
Edge& e = edges[ G[x][i] ];
if( !a[e.to] && e.cap > e.flow )
{
p[e.to] = G[x][i];
a[e.to] = min(a[x], e.cap-e.flow);
Q.push(e.to);
}
}
if( a[t] ) break;
}
if( ! a[t] ) break;
for(int u=t; u!=s; u=edges[ p[u] ].from )
{
edges[ p[u] ].flow += a[t];
edges[ p[u]^1 ].flow -= a[t];
}
flow += a[t];
}
return flow;
} }; int main()
{
EdmondsKarp T;
int n, m;
while(scanf("%d%d", &m, &n) !=EOF)
{
T.init(n+1);
for(int i=0; i<m; i++)
{
int a1, a2, a3;
scanf("%d%d%d", &a1, &a2, &a3);
T.AddEdge(a1, a2, a3);
}
printf("%d\n", T.Maxflow(1, n));
} return 0;
}
Dinic算法:
#include <cstdio>
#include <cstring>
#include <queue>
#define MAXN 205
#define INF 1000000000
using namespace std;
struct Edge {
int from, to, cap, flow;
}; struct Dinic {
int n, m, s, t;
vector<Edge> edges; //边表.edges[e]和edges[e^1]互为反向弧
vector<int> G[MAXN]; //邻接表。G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[MAXN]; //BFS使用
int d[MAXN]; //从起点到i的距离
int cur[MAXN]; //当前弧指针 void ClearAll(int n) {
for (int i = 0; i < n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int cap) {
edges.push_back((Edge) {from, to, cap, 0});
edges.push_back((Edge) {to, from, 0, 0});
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
} bool BFS() {//使用BFS计算出每个点在残量网络中到t的最短距离d.
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(s);
vis[s] = 1;
d[s] = 0;
while (!Q.empty()) {
int x = Q.front(); Q.pop();
for (int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if (!vis[e.to] && e.cap > e.flow) { //仅仅考虑残量网络中的弧
vis[e.to] = 1;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x, int a) {//使用DFS从S出发,沿着d值严格递减的顺序进行多路增广。
if (x == t || a == 0) return a;
int flow = 0, f;
for (int& i = cur[x]; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[G[x][i] ^ 1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
} int Maxflow(int s, int t) {
this->s = s; this->t = t;
int flow = 0;
while (BFS()) {
memset(cur, 0, sizeof(cur));
flow += DFS(s, INF);
}
return flow;
} };
Dinic g;
int main()
{
int n, m, i, a, b, c;
while (~scanf("%d%d", &m, &n)) {
g.ClearAll(n + 1);
for (i = 0; i < m; i++) {
scanf("%d%d%d", &a, &b, &c);
g.AddEdge(a, b, c);
}
int flow = g.Maxflow(1, n);
printf("%d\n", flow);
}
return 0;
}
HDU 1532||POJ1273:Drainage Ditches(最大流)的更多相关文章
- 【47.63%】【hdu 1532】Drainage Ditches
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s) ...
- poj-1273 Drainage Ditches(最大流基础题)
题目链接: Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 67475 Accepted ...
- POJ-1273 Drainage Ditches 最大流Dinic
Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 65146 Accepted: 25112 De ...
- POJ1273:Drainage Ditches(最大流入门 EK,dinic算法)
http://poj.org/problem?id=1273 Description Every time it rains on Farmer John's fields, a pond forms ...
- poj1273 Drainage Ditches (最大流板子
网络流一直没学,来学一波网络流. https://vjudge.net/problem/POJ-1273 题意:给定点数,边数,源点,汇点,每条边容量,求最大流. 解法:EK或dinic. EK:每次 ...
- [poj1273]Drainage Ditches(最大流)
解题关键:最大流裸题 #include<cstdio> #include<cstring> #include<algorithm> #include<cstd ...
- poj1273 Drainage Ditches Dinic最大流
Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 76000 Accepted: 2953 ...
- Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )
题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...
- POJ 1273 || HDU 1532 Drainage Ditches (最大流模型)
Drainage DitchesHal Burch Time Limit 1000 ms Memory Limit 65536 kb description Every time it rains o ...
随机推荐
- Qt编程—去掉标题栏和设置窗口透明用法
学习Qt编程,有时候我们很想做出好看又比较炫的画面,这时就常用到qt上的一些技巧. 这里我以一个小例子来展示qt的这些技巧,此qt编程写的,如图:(去掉标题栏和设置窗口透明后) 代码实现部分: .h文 ...
- 洛谷P1138 第k小整数
我偏不用sort Treap好题啊 看到只有一个人写Treap,而且写的不清楚,那我就来详细地写一下,方便新人学习 第(-1)部分:前置知识 二叉查找树:满足左子树的数据都比根节点小,右子树的数据都比 ...
- js滚动事件实现滚动触底加载
移动端触底加载时前端开发过程中常用功能,主要是通过三个值的大小来进行判断: 首先介绍jquery的写法,代码如下: $(window).scroll(function(){ var windowH=$ ...
- npm API文档
npm API文档 https://docs.npmjs.com/
- 屌丝也能开发安卓版2048(App Inventor)
想编写安卓游戏.java太难.来试试App Inventor.尽管有人觉得他是中学生的玩具,可是也能编写2048这种火爆游戏,不须要太复杂的算法. 整个游戏有几个模块: 一.游戏初始化 数列转化为图形 ...
- ES不设置副本是非常脆弱的,整个文章告诉了你为什么
Delaying Shard Allocation As discussed way back in Scale Horizontally, Elasticsearch will automatica ...
- [codeforces 859 E] Desk Disorder 解题报告 (并查集+思维)
题目链接:http://codeforces.com/problemset/problem/859/E 题目大意: 有$n$个人,$2n$个座位. 给出这$n$个人初始的座位,和他们想坐的座位. 每个 ...
- 如何将MVC AREA中的某一个页设为起始页
public class RouteConfig { public static void RegisterRoutes(RouteCollection routes) { routes.Ignore ...
- JavaScript原型链:prototype与__proto__
title: 'JavaScript原型链:prototype与__proto__' toc: false date: 2018-09-04 11:16:54 主要看了这一篇,讲解的很清晰,最主要的一 ...
- Linux安装软件的几种方式
Linux下软件安装的方式主要有源码安装,rpm安装,yum安装,而常用的安装包主要有以下三种: tar包:例如software-1.2.3-1.tar.gz.它是使用UNIX系统的打包工具tar打包 ...