LuoguP4365 [九省联考2018]秘密袭击
https://zybuluo.com/ysner/note/1141136
题面
求一颗大小为\(n\)的树取联通块的所有方案中,第\(k\)个数之和。
- \(n\leq1,667,k\leq n\)
解析
这题可以当作暴力踩标算的范本题目。。。(其实是因为高级算法嵌套起来有时不如暴力快)
但这个暴力我是想不到的。。。
我们可以单独讨论每个点对答案的贡献,并把大于该点权值的点权值设为\(1\),其它设为\(0\)。接下来,我们就可以用\(O(nk^2\))的树形DP暴搞了。
但是,复杂度\(O(n^2k^2)\)会鬼啊。
于是换一种思路,枚举一颗树的根(讨论这个点对答案的贡献),统计儿子点在联通块中的结果,并强制取根到儿子点的路径。我们设\(dp[u][i]\)表示点\(u\)为联通块中第\(i\)个点的方案数,就可以转移了。
然而复杂度\(O(n^2k)\)???
但是我们只用枚举整颗树值排名\(\leq k\)的数作为根的情况,复杂度可以降为\(O((n-k)nk)\)。
这还跑过了。。。
Update:强制认为只能转移到 点权值大 或者 点权值相等且点编号大的点,否则会记重。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=s;i>=b;i--)
using namespace std;
const int N=2100,mod=64123;
struct Edge{int to,next;}e[N<<1];
int d[N],h[N],dp[N][N],ans,cnt,n,k,w,root,tot;
il void add(re int u,re int v){e[++cnt]=(Edge){v,h[u]};h[u]=cnt;}
il int gi()
{
re int x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il void dfs(re int u,re int fa)
{
if((d[root]<d[u])||((d[u]==d[root])&&u<root))
fp(i,1,k-1) (dp[u][i+1]+=dp[fa][i])%=mod;
else fp(i,1,k) (dp[u][i]+=dp[fa][i])%=mod;
for(re int i=h[u];i+1;i=e[i].next)
{
re int v=e[i].to;
if(v==fa) continue;
dfs(v,u);
}
fp(i,1,k) (dp[fa][i]+=dp[u][i])%=mod;
}
int main()
{
memset(h,-1,sizeof(h));
n=gi();k=gi();w=gi();
fp(i,1,n) d[i]=gi();
fp(i,1,n-1)
{
re int u=gi(),v=gi();add(u,v);add(v,u);
}
fp(i,1,n)
{
root=i;tot=0;
fp(j,1,n) if((d[j]>d[i])||(d[i]==d[j]&&i>j)) ++tot;
if(tot<k-1) continue;
memset(dp,0,sizeof(dp));
dp[i][1]=1;
for(re int j=h[i];j+1;j=e[j].next)
{
re int v=e[j].to;
dfs(v,i);
}
(ans+=(1ll*dp[i][k]*d[i])%mod)%=mod;
}
printf("%d\n",ans);
return 0;
}
LuoguP4365 [九省联考2018]秘密袭击的更多相关文章
- [九省联考2018]秘密袭击coat
[九省联考2018]秘密袭击coat 研究半天题解啊... 全网几乎唯一的官方做法的题解:链接 别的都是暴力.... 要是n=3333暴力就完了. 一.问题转化 每个联通块第k大的数,直观统计的话,会 ...
- 【BZOJ5250】[九省联考2018]秘密袭击(动态规划)
[BZOJ5250][九省联考2018]秘密袭击(动态规划) 题面 BZOJ 洛谷 给定一棵树,求其所有联通块的权值第\(k\)大的和. 题解 整个\(O(nk(n-k))\)的暴力剪剪枝就给过了.. ...
- [BZOJ5250][九省联考2018]秘密袭击(DP)
5250: [2018多省省队联测]秘密袭击 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 3 Solved: 0[Submit][Status][D ...
- P4365 [九省联考2018]秘密袭击coat
$ \color{#0066ff}{ 题目描述 }$ Access Globe 最近正在玩一款战略游戏.在游戏中,他操控的角色是一名C 国士 兵.他的任务就是服从指挥官的指令参加战斗,并在战斗中取胜. ...
- 解题:九省联考2018 秘密袭击CoaT
题面 按照*Miracle*的话来说,网上又多了一篇n^3暴力的题解 可能是因为很多猫题虽然很好,但是写正解性价比比较低? 直接做不可做,转化为统计贡献:$O(n)$枚举每个权值,直接统计第k大大于等 ...
- [九省联考 2018]秘密袭击coat
Description 题库链接 给出一棵 \(n\) 个点的树,每个点有点权.求所有联通块的权值 \(k\) 大和,对 \(64123\) 取模. \(1\leq n,k\leq 1666\) So ...
- [LOJ #2473] [九省联考2018] 秘密袭击coat
题目链接 洛谷. LOJ,LOJ机子是真的快 Solution 我直接上暴力了...\(O(n^2k)\)洛谷要\(O2\)才能过...loj平均单点一秒... 直接枚举每个点为第\(k\)大的点,然 ...
- 并不对劲的复健训练-bzoj5250:loj2473:p4365:[九省联考2018]秘密袭击
题目大意 有一棵\(n\)(\(n\leq 1666\))个点的树,有点权\(d_i\),点权最大值为\(w\)(\(w\leq 1666\)).给出\(k\)(\(k\leq n\)),定义一个选择 ...
- luogu P4365 [九省联考2018]秘密袭击coat
luogu 这里不妨考虑每个点的贡献,即求出每个点在多少个联通块中为第\(k\)大的(这里权值相同的可以按任意顺序排大小),然后答案为所有点权值\(*\)上面求的东西之和 把比这个点大的点看成\(1\ ...
随机推荐
- 移动web——基本知识点总结
视口viewport 1.在桌面端的浏览器的宽度有肯能是很大的,如果设置了一个很大的值,那么在移动端中的浏览器显示的时候会有横向移动的拖拽条,为了避免出现这样的横向拖拽条,我们每次都要页面的宽度就是移 ...
- Java 中访问数据库的步骤?Statement 和PreparedStatement 之间的区别?
Java 中访问数据库的步骤?Statement 和PreparedStatement 之间的区别? Java 中访问数据库的步骤 1)注册驱动: 2)建立连接: 3)创建Statement: 4)执 ...
- java中“53”个关键字(含2个保留字)
1.java的关键字(keyword)有多少个? 51+2个保留字=53个关键字(java的关键字都是小写的!!) 2.java的保留字(reserve word)有多少个?问题:分别是什么? 2个保 ...
- SpringMVC(四)@RequestParam
使用@RequestParam可以将URL中的请求参数,绑定到方法的入参上,并通过@RequestParam的3个参数进行配置 Modifier and Type Optional Element D ...
- 扩增子图表解读1箱线图:Alpha多样性
箱线图 箱形图(Box-plot)又称为盒须图.盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图.因形状如箱子而得名.在宏基因组领域,常用于展示样品组中各样品Alpha多样性的分布 第一种情 ...
- CentOS下使用yum安装配置和使用svn
安装说明 系统环境:CentOS-6.3安装方式:yum install (源码安装容易产生版本兼容的问题)安装软件:系统自动下载SVN软件 检查已安装版本 ? 1 2 3 4 5 6 7 8 9 1 ...
- CAD在网页绘一个直线,得到直线id,再调该得到直线对象,然写扩展数据
IMxDrawDatabase::ObjectIdToObject 实体id返回实体对象. 参数 说明 [in] LONGLONG lId 实体id JS代码,中绘一个直线,得到直线id,再调该得到直 ...
- linux 的sed命令解释 sed ':t;N;s/\n/,/;b t' 将换行符换成逗号
linux 的sed命令解释 sed ':t;N;s/\n/,/;b t' 将换行符换成逗号 实现的功能是吧换行符换成逗号了,自己试验过. 求解释,:t N b t 都是什么意思??? :t 定义la ...
- 18清明校内测试T2
一道数论好题(math) Time Limit:1000ms Memory Limit:128MB 题目描述 rsy最近在研究欧几里得算法,不会的同学可以去看下课件以及代码…… 现在她想到了一个新 ...
- 面向对象:classmethod、staticmethod、property
一.classmethod(类方法).staticmethod(静态方法) 方法包括:普通方法.类方法和静态方法,三种方法在内存中都归属于类,区别在于调用方式不同. # 普通方法 由对象调用,至少一个 ...