在古老的CNN方法出现以后,并不能适用于图像中目标检测。20世纪60年代,Hubel和Wiesel( 百度百科 )在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。

参考:DNN的演进结构——CNN

AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年(Adaboost原理与推导)提出。它的自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个基本分类器。同时,在
每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数。

使用OpenCV作图像检测, Adaboost+haar训练过程,工程已经生成了opencv_haartraining.exe文件。

打开OpenCV的源码工程,发现函数调用栈是这样的。

1、对OpenCV源代码载入工程

源代码apps里面opencv_haartraining 工程的sources\apps\haartraining\haartraining.cpp

main函数使用了cvCreateTreeCascadeClassifier()函数,函数体在\sources\apps\haartraining\cvhaartraining.cpp文件

在cvhaartraining.h 前面添加 #define cvBoost_API __declspec (dllexport)

函数名

	void cvCreateTreeCascadeClassifier(const char* dirname,
const char* vecfilename,
const char* bgfilename,
int npos, int nneg, int nstages,
int numprecalculated,
int numsplits,
float minhitrate, float maxfalsealarm,
float weightfraction,
int mode, int symmetric,
int equalweights,
int winwidth, int winheight,
int boosttype, int stumperror,
int maxtreesplits, int minpos, bool bg_vecfile = false);

修改为:

#ifdef __cplusplus
extern "C"
{
#endif
cvBoost_API void __stdcall cvCreateTreeCascadeClassifier(const char* dirname,
const char* vecfilename,
const char* bgfilename,
int npos, int nneg, int nstages,
int numprecalculated,
int numsplits,
float minhitrate, float maxfalsealarm,
float weightfraction,
int mode, int symmetric,
int equalweights,
int winwidth, int winheight,
int boosttype, int stumperror,
int maxtreesplits, int minpos, bool bg_vecfile = false); }

对应函数体的头修改为:

cvBoost_API void cvCreateTreeCascadeClassifier(const char* dirname,
//__declspec (dllimport) void __stdcall cvCreateTreeCascadeClassifier(const char* dirname,
const char* vecfilename,
const char* bgfilename,
int npos, int nneg, int nstages,
int numprecalculated,
int numsplits,
float minhitrate, float maxfalsealarm,
float weightfraction,
int mode, int symmetric,
int equalweights,
int winwidth, int winheight,
int boosttype, int stumperror,
int maxtreesplits, int minpos, bool bg_vecfile )
{ }

去掉opencv_haartraining 工程的main函数,

修改opencv_haartraining 工程exe 替换为 dll工程,则可以生成lib和dll文件,可添加引用。

(若不生成lib文件,则表示在opencv_haartraining_engine.lib  中导出了函数声明,需要引用此库)

函数体为:


 

CNN 维基百科:https://en.wikipedia.org/wiki/Convolutional_neural_network

Adaboost维基百科: https//en.wikipedia.org/wiki/AdaBoost

OpenCV:OpenCV目标检测Boost方法训练的更多相关文章

  1. 10分钟学会使用YOLO及Opencv实现目标检测(下)|附源码

    将YOLO应用于视频流对象检测 首先打开 yolo_video.py文件并插入以下代码: # import the necessary packages import numpy as np impo ...

  2. tensorflow目标检测API之训练自己的数据集

    1.训练文件的配置 将生成的csv和record文件都放在新建的mydata文件夹下,并打开object_detection文件夹下的data文件夹,复制一个后缀为.pbtxt的文件到mtdata文件 ...

  3. 深度学习 + OpenCV,Python实现实时视频目标检测

    使用 OpenCV 和 Python 对实时视频流进行深度学习目标检测是非常简单的,我们只需要组合一些合适的代码,接入实时视频,随后加入原有的目标检测功能. 在本文中我们将学习如何扩展原有的目标检测项 ...

  4. OpenCV实现人脸检测

    OpenCV实现人脸检测(转载)  原文链接:https://www.cnblogs.com/mengdd/archive/2012/08/01/2619043.html 本文介绍最基本的用OpenC ...

  5. 腾讯推出超强少样本目标检测算法,公开千类少样本检测训练集FSOD | CVPR 2020

    论文提出了新的少样本目标检测算法,创新点包括Attention-RPN.多关系检测器以及对比训练策略,另外还构建了包含1000类的少样本检测数据集FSOD,在FSOD上训练得到的论文模型能够直接迁移到 ...

  6. 使用Caffe完成图像目标检测 和 caffe 全卷积网络

    一.[用Python学习Caffe]2. 使用Caffe完成图像目标检测 标签: pythoncaffe深度学习目标检测ssd 2017-06-22 22:08 207人阅读 评论(0) 收藏 举报 ...

  7. Faster R-CNN:详解目标检测的实现过程

    本文详细解释了 Faster R-CNN 的网络架构和工作流,一步步带领读者理解目标检测的工作原理,作者本人也提供了 Luminoth 实现,供大家参考.   Luminoth 实现:https:// ...

  8. 目标检测(三)Fast R-CNN

    作者:Ross Girshick 该论文提出的目标检测算法Fast Region-based Convolutional Network(Fast R-CNN)能够single-stage训练,并且可 ...

  9. Faster-rcnn实现目标检测

      Faster-rcnn实现目标检测 前言:本文浅谈目标检测的概念,发展过程以及RCNN系列的发展.为了实现基于Faster-RCNN算法的目标检测,初步了解了RCNN和Fast-RCNN实现目标检 ...

随机推荐

  1. Redis 原子操作INCR

    The content below come from http://try.redis.io/ There is something special about INCR. Why do we pr ...

  2. python浅拷贝与深拷贝

    今天写程序,人为制造了一个由浅拷贝引起的bug,有必要归纳一下.先附上源代码: class PerformanceTest(object): def __init__(self): ....... s ...

  3. N天学习一个linux命令之netstat

    用途 打印网络连接,路由表,网卡信息,假连接,组播成员信息 用法 1 显示网络连接信息 netstat [address_family_options] [--tcp|-t] [--udp|-u] [ ...

  4. Linux Container测试之block IO

      简介 Linux Container是OS级别的虚拟化方案,它相比于一般的虚拟机没有了硬件模拟以及指令模拟,相比传统虚拟机具有更低的开销,因此可以应用到私有云之中.LXC目前的版本支持对memor ...

  5. [转]C#操作SQL Server数据库

    转自:C#操作SQL Server数据库 1.概述 ado.net提供了丰富的数据库操作,这些操作可以分为三个步骤: 第一,使用SqlConnection对象连接数据库: 第二,建立SqlComman ...

  6. HDU 4514

    真是神奇,G++TLE,C++500MS... 判环有一个图论知识就是,m>=n时必有环.如果以m的范围建图,会MLE. 然后,利用拓扑排序再来判定是否有环,因为有些景点可能是孤立的.同时,在拓 ...

  7. C++学习笔记22,普通函数重载(1)

    转载请注明出处:http://blog.csdn.net/qq844352155/article/details/31353325 该博文仅用于交流学习,请慎用于不论什么商业用途,本博主保留对该博文的 ...

  8. android Service not registered

    Caused by: java.lang.IllegalArgumentException: Service not registered:com.broadcom.bt.app.settings.S ...

  9. 浅析 Linux 中的时间编程和实现原理一—— Linux 应用层的时间编程【转】

    本文转载自:http://www.cnblogs.com/qingchen1984/p/7007631.html 本篇文章主要介绍了"浅析 Linux 中的时间编程和实现原理一—— Linu ...

  10. 前缀和&&离散化

    现在正在上课,但我还是要同步更新博文...\滑稽 先讲一个离散化,就是把几个离的特别远的数在不影响结果的情况下,变成相近的数.倒是没什么影响,但应用在数组下标的话可以节约空间.(貌似和hash有点像) ...