I have been trying to teach myself Functional Programming since late 2013. Many of the concepts are very daunting because of their somewhat academic nature.

Since I’m obviously not an expert, I intend this to be a very practical post. You will find many posts trying to explain what a Monad is, some of them trying a bit too hard to come up with similes, but hopefully the sample code here will illustrate some of the concepts better.

It wasn’t until recently that I finally could say that I got what Monad means. Let’s explore why this concept even exists, and how it can help you when writing Swift code.

Map

One of the first things that we got to see at the 2014 WWDC with the introduction of Swift was that we could use the map function with the collection types. Let’s focus on Swift’s Array.

let numbers = [1, 2, 3]

let doubledNumbers = numbers.map { $0 * 2 }
// doubledNumbers: 2, 4, 6

The benefit of this pattern is that we can very clearly express the transformation that we’re trying to apply on the list of elements (in this case, doubling their value). Compare this with the imperative approach:

var doubledImperative: [Int] = []
for number in numbers {
   doubledImperative.append(number * 2)
}
// doubledImperative: 2, 4, 6

It’s not about solving it in a one-liner vs 3 lines, but with the former concise implementation, there’s a significantly higher signal-to-noise ratio. map allows us to express what we want to achieve, rather than how this is implemented. This eases our ability to reason about code when we read it.

But map doesn’t only make sense on Arraymap is a higher-order function that can be implemented on just any container type. That is, any type that, one way or another, wraps one or multiple values inside.

Let’s look at another example: OptionalOptional is a container type that wraps a value, or the absence of it.

let number = Optional(815)

let transformedNumber = number.map { $0 * 2 }.map { $0 % 2 == 0 }
// transformedNumber: Optional.Some(true)

The benefit of map in Optional is that it will handle nil values for us. If we’re trying to operate on a value that may be nil, we can use Optional.map to apply those transformations, and end up with nil if the original value was nil, but without having to resort to nested if let to unwrap the optional.

let nilNumber: Int? = .None

let transformedNilNumber = nilNumber.map { $0 * 2 }.map { $0 % 2 == 0 }
// transformedNilNumber: None

From this we can extrapolate that map, when implemented on different container types, can have slightly different behaviors, depending on the semantics of that type. For example, it only makes sense to transform the value inside an Optional when there’s actually a value inside.

This is the general signature of a map method, when implemented on a Container type, that wraps values of type T:

func map<U>(transformFunction: T -> U) -> Container<U>

Let’s analyze that signature by looking at the types. T is the type of elements in the current container, U will be the type of the elements in the container that will be returned. This allows us to, for example, map an array of strings, to an array of Ints that contains the lengths of each of the Strings in the original array.

We provide a function that takes a T value, and returns a value of type Umap will then use this function to create another Container instance, where the original values are replaced by the ones returned by the transformFunction.

Implementing map with our own type

Let’s implement our own container type. A Result enum is a pattern that you will see in a lot of open source Swift code today. This brings several benefits to an API when used instead of the old Obj-C NSError-by-reference argument.

We could define it like this:

enum Result<T> {
   case Value(T)
   case Error(NSError)
}

This is an implementation of a type known as Either in some programming languages. Only in this case we’re forcing one of the types to be an NSError instead of being generic, since we’re going to use it to report the result of an operation.

Conceptually, Result is very similar to Optional: it wraps a value of an arbitrary type, that may or may not be present. In this case, however, it may additional tell us why the value is not there.

To see an example, let’s implement a function that reads the contents of a file and returns the result as a Result object:

func dataWithContentsOfFile(file: String, encoding: NSStringEncoding) -> Result<NSData> {
   var error: NSError?    if let data = NSData(contentsOfFile: file, options: .allZeros, error: &error) {
       return .Value(data)
   }
   else {
       return .Error(error!)
   }
}

Easy enough. This function will return either an NSData object, or an NSError in case the file can’t be read.

Like we did before, we may want to apply some transformation to the read value. However, like in the case before, we would need to check that we have a value every step of the way, which may result in ugly nested if lets or switch statements. Let’s leverage map like we did before. In this case, we will only want to apply such transformation if we have a value. If we don’t, we can simply pass the same error through.

Imagine that we wanted to read a file with string contents. We would get an NSData, that then we need to transform into a String. Then say that we want to turn it into uppercase:

NSData -> String -> String

We can do this with a series of map transformations (we’ll discuss the implementation of map later):

let data: Result<NSData> = dataWithContentsOfFile(path, NSUTF8StringEncoding)

let uppercaseContents: Result<String> = data.map { NSString(data: $0, encoding: NSUTF8StringEncoding)! }.map { $0.uppercaseString }

Similar to the early example with map on Arrays, this code is a lot more expressive. It simply declares what we want to accomplish, with no boilerplate.

In comparison, this is what the above code would look like without the use of map:

let data: Result<NSData> = dataWithContentsOfFile(path, NSUTF8StringEncoding)

var stringContents: String?

switch data {
   case let .Value(value):
       stringContents = NSString(data: value, encoding: NSUTF8StringEncoding)
   case let .Error(error):
       break
} let uppercaseContents: String? = stringContents?.uppercaseString

How would Result.map be implemented? Let’s take a look:

extension Result {
   func map<U>(f: T -> U) -> Result<U> {
       switch self {
           case let .Value(value):
               return Result<U>.Value(f(value))
           case let .Error(error):
               return Result<U>.Error(error)
       }
   }
}

Again, the transformation function f takes a value of type T (in the above example, NSData) and returns a value of type U (String). After calling map, we’ll get a Result<U>(Result<String>) from an initial Result<T> (Result<NSData>). We only call f whenever we start with a value, and we simply return another Result with the same error otherwise.

Functors

We’ve seen what map can do when implemented on a container type, like OptionalArray or Result. To recap, it allows us to get a new container, where the value(s) wrapped inside are transformed according to a function. So what’s a Functor you may ask? A Functor is any type that implements map. That’s the whole story.

Once you know what a functor is, we can talk about some types like Dictionary or even closures, and by saying that they’re functors, you will immediately know of something you can do with them.

Monads

In the earlier example, we used the transformation function to return another value, but what if we wanted to use it to return a new Result object? Put another way, what if the transformation operation that we’re passing to map can fail with an error as well? Let’s look at what the types would look like.

func map<U>(f: T -> U) -> Result<U>

In our example, T is an NSData that we’re converting into U, a Result<String>. So let’s replace that in the signature:

func map(f: NSData -> Result<String>) -> Result<Result<String>>

Notice the nested Results in the return type. This is probably not what we’ll want. But it’s OK. We can implement a function that takes the nested Result, and flattens it into a simpleResult:

extension Result {
   static func flatten<T>(result: Result<Result<T>>) -> Result<T> {
       switch result {
           case let .Value(innerResult):
               return innerResult
           case let .Error(error):
               return Result<T>.Error(error)
       }
   }
}

This flatten function takes a nested Result with a T inside, and return a single Result<T> simply by extracting the inner object inside the Value, or the Error.

flatten function can be found in other contexts. For example, one can flatten an array of arrays into a contiguous, one-dimensional array.

With this, we can implement our Result<NSData> -> Result<String> transformation by combining mapand flatten:

let stringResult = Result<String>.flatten(data.map { (data: NSData) -> (Result<String>) in
   if let string = NSString(data: data, encoding: NSUTF8StringEncoding) {
       return Result.Value(string)
   }
   else {
       return Result<String>.Error(NSError(domain: "com.javisoto.es.error_domain", code: JSErrorCodeInvalidStringData, userInfo: nil))
   }
})

This is so common, that you will find this defined in many places as flatMap or flattenMap, which we could implement for Result like this:

extension Result {
   func flatMap<U>(f: T -> Result<U>) -> Result<U> {
       return Result.flatten(map(f))
   }
}

And with that, we turned our Result type into a Monad! A Monad is a type of Functor. A type which, along with map, implements a flatMap function (sometimes also known asbind) with a signature similar to the one we’ve seen here. Container types like the ones we presented here are usually Monads, but you will also see that pattern for example in types that encapsulate deferred computation, like Signal or Future.

The words Functor and Monad come from category theory, with which I’m not familiar at all. However, there’s value in having names to refer to these concepts. Computer scientists love to come up with names for things. But it’s those names that allow us to refer to abstract concepts (some extremely abstract, like Monad), and immediately know what we mean (of course, assuming we have the previous knowledge of their meaning). We get the same benefit out of sharing names for things like design patterns (decorator, factory…).

It took me a very long time to assimilate all the ideas in this blog post, so if you’re not familiar with any of this I don’t expect you to finish reading this and immediately understand it. However, I encourage you to create an Xcode playground and try to come up with the implementation for mapflatten and flatMap for Result or a similar container type (perhaps try with Optional or even Array), and use some sample values to play with them.

And next time you hear the words Functor or Monad, don’t be scared :) They’re simply design patterns to describe common operations that we can perform on different types.

Open source version of the article, where you can create an issue to ask a question or open pull requests: https://github.com/JaviSoto/Blog-Posts/blob/master/Functor%20and%20Monad%20in%20Swift/FunctorAndMonad.md

http://www.javiersoto.me/post/106875422394

Functor and Monad in Swift的更多相关文章

  1. 函数编程中functor和monad的形象解释

    函数编程中functor和monad的形象解释 函数编程中Functor函子与Monad是比较难理解的概念,本文使用了形象的图片方式解释了这两个概念,容易理解与学习,分别使用Haskell和Swift ...

  2. 泛函编程(28)-粗俗浅解:Functor, Applicative, Monad

    经过了一段时间的泛函编程讨论,始终没能实实在在的明确到底泛函编程有什么区别和特点:我是指在现实编程的情况下所谓的泛函编程到底如何特别.我们已经习惯了传统的行令式编程(imperative progra ...

  3. 怎样理解Functor与Monad

    1. 复合函数操作符 Prelude> :t (.) (.) :: (b -> c) -> (a -> b) -> a -> c Prelude> (.) ( ...

  4. 重新理解 Monad

    对于大多数刚刚入门函数式编程的同学来说,monad(单子.又叫单体)可能是这里面的一道坎.你可能对 map . flatMap 以及 filter 再熟悉不过,可是到了高阶的抽象层次上就又会变得一脸懵 ...

  5. Monad / Functor / Applicative 浅析

    前言 Swift 其实比 Objective-C 复杂很多,相对于出生于上世纪 80 年代的 Objective-C 来说,Swift 融入了大量新特性.这也使得我们学习掌握这门语言变得相对来说更加困 ...

  6. 函数式编程-将Monad(单子)融入Swift

    前言 近期又开始折腾起Haskell,掉进这个深坑恐怕很难再爬上来了.在不断深入了解Haskell的各种概念以及使用它们去解决实际问题的时候,我会试想着将这些概念移植到Swift中.函数式编程范式的很 ...

  7. Functor、Applicative 和 Monad(重要)

    Functor.Applicative 和 Monad Posted by 雷纯锋Nov 8th, 2015 10:53 am Functor.Applicative 和 Monad 是函数式编程语言 ...

  8. Functor、Applicative 和 Monad

    Functor.Applicative 和 Monad 是函数式编程语言中三个非常重要的概念,尤其是 Monad. 说明:本文中的主要代码为 Haskell 语言,它是一门纯函数式的编程语言. 一.结 ...

  9. swift 学习(二)基础知识 (函数,闭包,ARC,柯里化,反射)

    函数 func x(a:Int, b:Int)  {}   func x(a:Int, b:Int) -> Void {}  func x(a:Int, b:Int) ->(Int,Int ...

随机推荐

  1. ansible plugins 列表

    [action plugins] [cache plugins]jsonfilememcachedmemorymongodbpickleredisyaml [callback plugins]acti ...

  2. Codeforces 263C. Appleman and Toastman

    C. Appleman and Toastman time limit per test  2 seconds memory limit per test  256 megabytes input  ...

  3. Void 参数

    在C程序中如果在声明函数的时候如果没有任何参数那么需要将参数定义为void以此来限定此函数不可传递任何参数,如果不进行限定让参数表默认为空其意义是可以传递任何参数,这个问题的由来实际上是由于要兼容早期 ...

  4. nyoj_38_布线问题_201403121753

    布线问题 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 南阳理工学院要进行用电线路改造,现在校长要求设计师设计出一种布线方式,该布线方式需要满足以下条件:1.把所有 ...

  5. N天学习一个linux命令之netstat

    用途 打印网络连接,路由表,网卡信息,假连接,组播成员信息 用法 1 显示网络连接信息 netstat [address_family_options] [--tcp|-t] [--udp|-u] [ ...

  6. MySQL系列:innodb源码分析 图 ---zerok的专栏

    http://blog.csdn.net/yuanrxdu/article/details/40985363

  7. VC ON_CONTROL_RANGE多个控件响应一个方法

    步骤/方法 分三个步骤 在头文件里声明函数比如 afx_msg void onNum(UINT uID) 在.cpp文件里加入函数体 void CCalculatorDlg::OnNum(UINT u ...

  8. STM32F407VG (五)定时器

    一.定时器节本分类和主要特点 1.STM32定时器分类: 1)看门狗定时器 2)SysTick定时器 3)RTC定时器 4)通用定时器 a)通用定时器TIM2~TIM5, 当中TIM2和TIM5是32 ...

  9. 小米红米1S 电信/联通版 专用TWRP2.8.1.1中文版 (全屏触摸/支持MTP挂载内外置存储)

    转载请注明出处和链接: http://blog.csdn.net/syhost/article/details/39340477 说说中文TWRP的简史:          中文TWRP是本人在201 ...

  10. Swift基本常识点

    import Foundation // 单行注释 // 多行注释(支持嵌套,OC是不支持的) // 常量let,初始化之后就不可改变. // 常量的具体类型可以自动识别,等号后面是什么类型,它就是什 ...