First One

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)

Total Submission(s): 690    Accepted Submission(s): 205

Problem Description
soda has an integer array a1,a2,…,an.
Let S(i,j) be
the sum of ai,ai+1,…,aj.
Now soda wants to know the value below:

∑i=1n∑j=in(⌊log2S(i,j)⌋+1)×(i+j)

Note: In this problem, you can consider log20 as
0.

 
Input
There are multiple test cases. The first line of input contains an integer T,
indicating the number of test cases. For each test case:



The first line contains an integer n (1≤n≤105),
the number of integers in the array.

The next line contains n integers a1,a2,…,an (0≤ai≤105).
 
Output
For each test case, output the value.
 
Sample Input
1
2
1 1
 
Sample Output
12
 
Source
 

题目大意:对题目中的式子求结果。

解题思路:由于0<=ai<=10^5,0<n<=10^5,所以0<=S(i,j)<10^12<2^34,设k=⌊log2S(i,j)⌋+1则1<=k<=34,那么我们

每次枚举k时,求解出全部符合条件的(i+j),求和就可以。

而对于每个k,求解(i+j)时。先预处理出s[i](s[i]=a1+……+ai。则sum(i,j)=s[j]-s[i-1]),那么接下来仅仅需找到全部

满足2^(k-1)<=sum(i,j)<=2^k-1的(i+j)就可以。

对于求(i+j),我们再次枚举i,对每个i。求解出j的一个区间[l,r],使得对当前的i,有当l<=j<=r时,2^(k-1)

<=sum(i,j)<=2^k-1成立。那么对于当前的k,i,满足条件的i。j区间为[i,j](l<=j<=r)。这些区间相应同一个k和同一个i,这些区间的(i+j)的总和为:i*(r-l+1)+(r+l)*(r-l+1)/2。

枚举全然部的k和i,将全部和累加。

对于求解区间[l,r],如果k=a,在枚举i=b时,得到j的区间[L1,R1],那么同样的k,在枚举i=b+1时,得到j的区间[L2,R2]

一定不在区间[L1,R1]的左边,简单的说就是L2>L1。R2>R1。

因此查找l。r时能够降低范围。

代码例如以下:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <string>
#include <vector>
#include <deque>
#include <list>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <sstream>
#include <fstream>
#include <limits.h>
#define debug "output for debug\n"
#define pi (acos(-1.0))
#define eps (1e-6)
#define inf (1<<28)
#define sqr(x) (x) * (x)
#define mod 1000000007
using namespace std;
typedef long long ll;
typedef unsigned long long ULL; ll fl[35]={0,0,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536,131072,262144,524288,1048576,2097152,4194304,8388608,16777216,33554432,67108864,134217728,268435456,536870912,1073741824,2147483648,4294967296,8589934592};
ll fr[35]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535,131071,262143,524287,1048575,2097151,4194303,8388607,16777215,33554431,67108863,134217727,268435455,536870911,1073741823,2147483647,4294967295,8589934591,17179869183};
ll s[100005];
int main()
{
ll i,j,k,n,a,l,r,t;
scanf("%I64d",&t);
while(t--)
{
scanf("%I64d",&n);
for(i=1;i<=n;i++)
{
scanf("%I64d",&a);
s[i]=s[i-1]+a;
}
ll ans=0;
for(k=1;k<=34;k++)
{
l=1;
r=0; //移位操作控制sum(i,j)的范围。也能够用数组
//fl= k==1? 0:(1ll<<(k-1));fr=(1ll<<k)-1;
for(i=1;i<=n;i++)
{
l=max(i,l);
while(l<=n&&s[l]-s[i-1]<fl[k])//while(l<=n&&s[l]-s[i-1]<fl)
l++;
r=max(l-1,r);
while(r+1<=n&&s[r+1]-s[i-1]>=fl[k]&&s[r+1]-s[i-1]<=fr[k])//while(r+1<=n&&s[r+1]-s[i-1]>=fl[k]&&s[r+1]-s[i-1]<=fr)
r++;
if(l<=r)
ans+=(i*(r-l+1)+(r+l)*(r-l+1)/2)*k;
//ans+=(i+l+i+r)*(r-l+1)/2*k;
}
}
printf("%I64d\n",ans);
}
return 0;
}

HDU 5358 First One(枚举)的更多相关文章

  1. 2015多校第6场 HDU 5358 First One 枚举,双指针

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5358 题意:如题. 解法:观察式子发现,由于log函数的存在,使得这个函数的值域<=34,然后我 ...

  2. HDU 5358 尺取法+枚举

    题意:给一个数列,按如下公式求和. 分析:场上做的时候,傻傻以为是线段树,也没想出题者为啥出log2,就是S(i,j) 的二进制表示的位数.只能说我做题依旧太死板,让求和就按规矩求和,多考虑一下就能发 ...

  3. HDU 5358 First One(枚举)

    这道题假设依照表达式一个个来算肯定超时,下午时候想了一个O(nlogn*logn)的算法.可是t了.由于这道题卡的很紧几百个例子,必须nlogn的算法才干够ac 回到这道题,考虑log(sum(i,j ...

  4. Hdu 5358 First One (尺取法+枚举)

    题目链接: Hdu 5358 First One 题目描述: 数组a有n个元素,S[i,j]定义为a[i]+a[i+1]+.....+a[j],问:这个死东西等于多少? 解题思路: 二分肯定超,这个题 ...

  5. hdu 5358 First One

    题目链接:hdu 5358 思路不难理解,就是个尺取法而已,floor(log2X) + 1 就是求 X 的二进制表示的位数,对于题目来说这个值最多只是 30+,从这里入手开始枚举,运用尺取法可以达到 ...

  6. HDU 5358 多校第6场 First One

    First One Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Tota ...

  7. HDU 5358(2015多校联合训练赛第六场1006) First One (区间合并+常数优化)

    pid=5358">HDU 5358 题意: 求∑​i=1​n​​∑​j=i​n​​(⌊log​2​​S(i,j)⌋+1)∗(i+j). 思路: S(i,j) < 10^10 & ...

  8. hdu 5358 First One 2015多校联合训练赛#6 枚举

    First One Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Tota ...

  9. HDU 5778 abs (枚举)

    abs 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5778 Description Given a number x, ask positive ...

随机推荐

  1. AlertDialog自己定义View的使用方法+怎样改变弹出框的大小

    android系统定义了弹出框,支持我们自己定义布局: public AlertDialog getEditCustomDialog() { LayoutInflater inflater = get ...

  2. Gym 100418J Lucky tickets(数位dp)

    题意:给定一个n.求区间[1, n]之间的全部的a的个数.a满足: a能整除  把a表示自身二进制以后1的个数 思路:题意非常绕.... 数位dp,对于全部可能的1的个数我们都dfs一次 对于某一个可 ...

  3. servletConfig和ServletContext 以及servletContextListener介绍

    <servlet>     <servlet-name>BeerParamTests</servlet-name>     <servlet-class> ...

  4. c6----函数的声明和实现

    // // main.c // 函数的声明和定义 // // Created by xiaomage on 15/6/7. // Copyright (c) 2015年 xiaomage. All r ...

  5. 0x05 排序

    说是排序结果就是各种奇技淫巧 中位数被坑多了久病成医,例题一题搞笑一题糖果传递(昨晚精神那么好效率还那么差) #include<cstdio> #include<iostream&g ...

  6. vue中采用axios发送请求及拦截器

    这几天在使用vue中axios发送get请求的时候很顺手,但是在发送post请求的时候老是在成功的回调函数里边返回参数不存在,当时就纳闷了,经过查阅资料,终于得到了解决方案,在此做一总结: 首先我们在 ...

  7. Apache-TomCat安装配置

    Apache-TomCat安装配置 本文是免安装版的Tomcat!(安装JavaJDK的步骤就不多述了!) (1)官网下载地址:https://tomcat.apache.org/download-8 ...

  8. <Android Framework 之路>Android5.1 Camera Framework(四)——框架总结

    前言 从之前的几篇文件,可以基本弄清楚 Camera从APK,经过framework的衔接,与HAL层进行交互,最终通过驱动完成Camera的一些动作. Camera层次分析 APP层 Framewo ...

  9. C++利用函数模板得到数组的长度

    #include<iostream> template <typename T, int N> int ArraySize (T (&arr)[N]) { //此处是数 ...

  10. 移动互联网iOS工程师必须知道的三点

    如果十年磨一剑,那么现在起作为一名iOS工程师,以下三点你必须要知道: 1.现在开始学swift正是时候,永远不要怕晚 因为…新时代的程序语言Swift有很多优势,长江后浪推前浪,Swift上手快,开 ...