First One

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)

Total Submission(s): 690    Accepted Submission(s): 205

Problem Description
soda has an integer array a1,a2,…,an.
Let S(i,j) be
the sum of ai,ai+1,…,aj.
Now soda wants to know the value below:

∑i=1n∑j=in(⌊log2S(i,j)⌋+1)×(i+j)

Note: In this problem, you can consider log20 as
0.

 
Input
There are multiple test cases. The first line of input contains an integer T,
indicating the number of test cases. For each test case:



The first line contains an integer n (1≤n≤105),
the number of integers in the array.

The next line contains n integers a1,a2,…,an (0≤ai≤105).
 
Output
For each test case, output the value.
 
Sample Input
1
2
1 1
 
Sample Output
12
 
Source
 

题目大意:对题目中的式子求结果。

解题思路:由于0<=ai<=10^5,0<n<=10^5,所以0<=S(i,j)<10^12<2^34,设k=⌊log2S(i,j)⌋+1则1<=k<=34,那么我们

每次枚举k时,求解出全部符合条件的(i+j),求和就可以。

而对于每个k,求解(i+j)时。先预处理出s[i](s[i]=a1+……+ai。则sum(i,j)=s[j]-s[i-1]),那么接下来仅仅需找到全部

满足2^(k-1)<=sum(i,j)<=2^k-1的(i+j)就可以。

对于求(i+j),我们再次枚举i,对每个i。求解出j的一个区间[l,r],使得对当前的i,有当l<=j<=r时,2^(k-1)

<=sum(i,j)<=2^k-1成立。那么对于当前的k,i,满足条件的i。j区间为[i,j](l<=j<=r)。这些区间相应同一个k和同一个i,这些区间的(i+j)的总和为:i*(r-l+1)+(r+l)*(r-l+1)/2。

枚举全然部的k和i,将全部和累加。

对于求解区间[l,r],如果k=a,在枚举i=b时,得到j的区间[L1,R1],那么同样的k,在枚举i=b+1时,得到j的区间[L2,R2]

一定不在区间[L1,R1]的左边,简单的说就是L2>L1。R2>R1。

因此查找l。r时能够降低范围。

代码例如以下:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <string>
#include <vector>
#include <deque>
#include <list>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <sstream>
#include <fstream>
#include <limits.h>
#define debug "output for debug\n"
#define pi (acos(-1.0))
#define eps (1e-6)
#define inf (1<<28)
#define sqr(x) (x) * (x)
#define mod 1000000007
using namespace std;
typedef long long ll;
typedef unsigned long long ULL; ll fl[35]={0,0,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536,131072,262144,524288,1048576,2097152,4194304,8388608,16777216,33554432,67108864,134217728,268435456,536870912,1073741824,2147483648,4294967296,8589934592};
ll fr[35]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535,131071,262143,524287,1048575,2097151,4194303,8388607,16777215,33554431,67108863,134217727,268435455,536870911,1073741823,2147483647,4294967295,8589934591,17179869183};
ll s[100005];
int main()
{
ll i,j,k,n,a,l,r,t;
scanf("%I64d",&t);
while(t--)
{
scanf("%I64d",&n);
for(i=1;i<=n;i++)
{
scanf("%I64d",&a);
s[i]=s[i-1]+a;
}
ll ans=0;
for(k=1;k<=34;k++)
{
l=1;
r=0; //移位操作控制sum(i,j)的范围。也能够用数组
//fl= k==1? 0:(1ll<<(k-1));fr=(1ll<<k)-1;
for(i=1;i<=n;i++)
{
l=max(i,l);
while(l<=n&&s[l]-s[i-1]<fl[k])//while(l<=n&&s[l]-s[i-1]<fl)
l++;
r=max(l-1,r);
while(r+1<=n&&s[r+1]-s[i-1]>=fl[k]&&s[r+1]-s[i-1]<=fr[k])//while(r+1<=n&&s[r+1]-s[i-1]>=fl[k]&&s[r+1]-s[i-1]<=fr)
r++;
if(l<=r)
ans+=(i*(r-l+1)+(r+l)*(r-l+1)/2)*k;
//ans+=(i+l+i+r)*(r-l+1)/2*k;
}
}
printf("%I64d\n",ans);
}
return 0;
}

HDU 5358 First One(枚举)的更多相关文章

  1. 2015多校第6场 HDU 5358 First One 枚举,双指针

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5358 题意:如题. 解法:观察式子发现,由于log函数的存在,使得这个函数的值域<=34,然后我 ...

  2. HDU 5358 尺取法+枚举

    题意:给一个数列,按如下公式求和. 分析:场上做的时候,傻傻以为是线段树,也没想出题者为啥出log2,就是S(i,j) 的二进制表示的位数.只能说我做题依旧太死板,让求和就按规矩求和,多考虑一下就能发 ...

  3. HDU 5358 First One(枚举)

    这道题假设依照表达式一个个来算肯定超时,下午时候想了一个O(nlogn*logn)的算法.可是t了.由于这道题卡的很紧几百个例子,必须nlogn的算法才干够ac 回到这道题,考虑log(sum(i,j ...

  4. Hdu 5358 First One (尺取法+枚举)

    题目链接: Hdu 5358 First One 题目描述: 数组a有n个元素,S[i,j]定义为a[i]+a[i+1]+.....+a[j],问:这个死东西等于多少? 解题思路: 二分肯定超,这个题 ...

  5. hdu 5358 First One

    题目链接:hdu 5358 思路不难理解,就是个尺取法而已,floor(log2X) + 1 就是求 X 的二进制表示的位数,对于题目来说这个值最多只是 30+,从这里入手开始枚举,运用尺取法可以达到 ...

  6. HDU 5358 多校第6场 First One

    First One Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Tota ...

  7. HDU 5358(2015多校联合训练赛第六场1006) First One (区间合并+常数优化)

    pid=5358">HDU 5358 题意: 求∑​i=1​n​​∑​j=i​n​​(⌊log​2​​S(i,j)⌋+1)∗(i+j). 思路: S(i,j) < 10^10 & ...

  8. hdu 5358 First One 2015多校联合训练赛#6 枚举

    First One Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Tota ...

  9. HDU 5778 abs (枚举)

    abs 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5778 Description Given a number x, ask positive ...

随机推荐

  1. 怎样通过反编译工具与插件 查看java *.class 文件源代码

    Java Decompiler[java 反编译]:开发了反编译工具.能够方便查看*.class 文件源代码.以下介绍几种查看源代码的方式:工具&插件 1.JD-GUI JD-GUI  是显示 ...

  2. Codeforces Round #257(Div. 2) B. Jzzhu and Sequences(矩阵高速幂)

    题目链接:http://codeforces.com/problemset/problem/450/B B. Jzzhu and Sequences time limit per test 1 sec ...

  3. hdu 1165 Eddy&#39;s research II(数学题,递推)

    // Eddy 继续 Problem Description As is known, Ackermann function plays an important role in the sphere ...

  4. Android学习笔记之ProgressBar案例分析

    (1) <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:to ...

  5. svn 服务器的搭建

     SVN服务器运行模式:模式1:svn服务器单独运行  监听: 3690端口    访问: svn://IP模式2: svn 服务器+ apache   : 80 端口  访问: http://IP  ...

  6. 0x08 总结与练习

    1:前面已经搞好了. 2:poj2965 这种开关问题一个点要么点一次要么不点,枚举所有点的方案实行即可 #include<cstdio> #include<iostream> ...

  7. linux + nginx 的配置优化

    linux 关于TCP/IP 的优化配置  配置文件/etc/sysctl.conf    修改完文件生效的命令  /sbin/sysctl -p 如下是总结的配置内容及说明 net.ipv4.con ...

  8. ubuntu软件卸载方法

    一.查看软件包 1.查看已安装的软件包 dpkg --list 2.查看不知道要删除软件的具体名称 dpkg --get-selections | grep <软件相关名称> 二.卸载 1 ...

  9. POJ 1471 模拟?

    题意:求最大无坏点三角形 思路: 模拟? (为什么我模拟过了...) 有人用 DP,有人用 搜索... // by SiriusRen #include <cstdio> #include ...

  10. GCC中的弱符号与强符号

    GCC中的弱符号与强符号 我们经常在编程中碰到一种情况叫符号重复定义.多个目标文件中含有相同名字全局符号的定义,那么这些目标文件链接的时候将会出现符号重复定义的错误.比如我们在目标文件A和目标文件B都 ...