First One

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)

Total Submission(s): 690    Accepted Submission(s): 205

Problem Description
soda has an integer array a1,a2,…,an.
Let S(i,j) be
the sum of ai,ai+1,…,aj.
Now soda wants to know the value below:

∑i=1n∑j=in(⌊log2S(i,j)⌋+1)×(i+j)

Note: In this problem, you can consider log20 as
0.

 
Input
There are multiple test cases. The first line of input contains an integer T,
indicating the number of test cases. For each test case:



The first line contains an integer n (1≤n≤105),
the number of integers in the array.

The next line contains n integers a1,a2,…,an (0≤ai≤105).
 
Output
For each test case, output the value.
 
Sample Input
1
2
1 1
 
Sample Output
12
 
Source
 

题目大意:对题目中的式子求结果。

解题思路:由于0<=ai<=10^5,0<n<=10^5,所以0<=S(i,j)<10^12<2^34,设k=⌊log2S(i,j)⌋+1则1<=k<=34,那么我们

每次枚举k时,求解出全部符合条件的(i+j),求和就可以。

而对于每个k,求解(i+j)时。先预处理出s[i](s[i]=a1+……+ai。则sum(i,j)=s[j]-s[i-1]),那么接下来仅仅需找到全部

满足2^(k-1)<=sum(i,j)<=2^k-1的(i+j)就可以。

对于求(i+j),我们再次枚举i,对每个i。求解出j的一个区间[l,r],使得对当前的i,有当l<=j<=r时,2^(k-1)

<=sum(i,j)<=2^k-1成立。那么对于当前的k,i,满足条件的i。j区间为[i,j](l<=j<=r)。这些区间相应同一个k和同一个i,这些区间的(i+j)的总和为:i*(r-l+1)+(r+l)*(r-l+1)/2。

枚举全然部的k和i,将全部和累加。

对于求解区间[l,r],如果k=a,在枚举i=b时,得到j的区间[L1,R1],那么同样的k,在枚举i=b+1时,得到j的区间[L2,R2]

一定不在区间[L1,R1]的左边,简单的说就是L2>L1。R2>R1。

因此查找l。r时能够降低范围。

代码例如以下:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <string>
#include <vector>
#include <deque>
#include <list>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <sstream>
#include <fstream>
#include <limits.h>
#define debug "output for debug\n"
#define pi (acos(-1.0))
#define eps (1e-6)
#define inf (1<<28)
#define sqr(x) (x) * (x)
#define mod 1000000007
using namespace std;
typedef long long ll;
typedef unsigned long long ULL; ll fl[35]={0,0,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536,131072,262144,524288,1048576,2097152,4194304,8388608,16777216,33554432,67108864,134217728,268435456,536870912,1073741824,2147483648,4294967296,8589934592};
ll fr[35]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535,131071,262143,524287,1048575,2097151,4194303,8388607,16777215,33554431,67108863,134217727,268435455,536870911,1073741823,2147483647,4294967295,8589934591,17179869183};
ll s[100005];
int main()
{
ll i,j,k,n,a,l,r,t;
scanf("%I64d",&t);
while(t--)
{
scanf("%I64d",&n);
for(i=1;i<=n;i++)
{
scanf("%I64d",&a);
s[i]=s[i-1]+a;
}
ll ans=0;
for(k=1;k<=34;k++)
{
l=1;
r=0; //移位操作控制sum(i,j)的范围。也能够用数组
//fl= k==1? 0:(1ll<<(k-1));fr=(1ll<<k)-1;
for(i=1;i<=n;i++)
{
l=max(i,l);
while(l<=n&&s[l]-s[i-1]<fl[k])//while(l<=n&&s[l]-s[i-1]<fl)
l++;
r=max(l-1,r);
while(r+1<=n&&s[r+1]-s[i-1]>=fl[k]&&s[r+1]-s[i-1]<=fr[k])//while(r+1<=n&&s[r+1]-s[i-1]>=fl[k]&&s[r+1]-s[i-1]<=fr)
r++;
if(l<=r)
ans+=(i*(r-l+1)+(r+l)*(r-l+1)/2)*k;
//ans+=(i+l+i+r)*(r-l+1)/2*k;
}
}
printf("%I64d\n",ans);
}
return 0;
}

HDU 5358 First One(枚举)的更多相关文章

  1. 2015多校第6场 HDU 5358 First One 枚举,双指针

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5358 题意:如题. 解法:观察式子发现,由于log函数的存在,使得这个函数的值域<=34,然后我 ...

  2. HDU 5358 尺取法+枚举

    题意:给一个数列,按如下公式求和. 分析:场上做的时候,傻傻以为是线段树,也没想出题者为啥出log2,就是S(i,j) 的二进制表示的位数.只能说我做题依旧太死板,让求和就按规矩求和,多考虑一下就能发 ...

  3. HDU 5358 First One(枚举)

    这道题假设依照表达式一个个来算肯定超时,下午时候想了一个O(nlogn*logn)的算法.可是t了.由于这道题卡的很紧几百个例子,必须nlogn的算法才干够ac 回到这道题,考虑log(sum(i,j ...

  4. Hdu 5358 First One (尺取法+枚举)

    题目链接: Hdu 5358 First One 题目描述: 数组a有n个元素,S[i,j]定义为a[i]+a[i+1]+.....+a[j],问:这个死东西等于多少? 解题思路: 二分肯定超,这个题 ...

  5. hdu 5358 First One

    题目链接:hdu 5358 思路不难理解,就是个尺取法而已,floor(log2X) + 1 就是求 X 的二进制表示的位数,对于题目来说这个值最多只是 30+,从这里入手开始枚举,运用尺取法可以达到 ...

  6. HDU 5358 多校第6场 First One

    First One Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Tota ...

  7. HDU 5358(2015多校联合训练赛第六场1006) First One (区间合并+常数优化)

    pid=5358">HDU 5358 题意: 求∑​i=1​n​​∑​j=i​n​​(⌊log​2​​S(i,j)⌋+1)∗(i+j). 思路: S(i,j) < 10^10 & ...

  8. hdu 5358 First One 2015多校联合训练赛#6 枚举

    First One Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Tota ...

  9. HDU 5778 abs (枚举)

    abs 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5778 Description Given a number x, ask positive ...

随机推荐

  1. Spring进阶之路(10)-Advice简单介绍以及通过cglib生成AOP代理对象

    Advice简单介绍 1. Before:在目标方法运行之前运行织入.假设Before的处理中没有进行特殊的处理.那么目标方法终于会运行,可是假设想要阻止目标方法运行时.能够通过抛出一个异常来实现.B ...

  2. VMWare虚拟机下为Ubuntu 12.04.1网络设置(NAT方式)

    NAT方式: 虚拟机能够上外网,能够訪问宿主计算机所在网络的其它计算机(反之不行). 第一步:设置虚拟机vmware网络參数 (1)打开虚拟机,选择菜单"编辑">" ...

  3. Java&amp;Xml教程(十一)JAXB实现XML与Java对象转换

    JAXB是Java Architecture for XML Binding的缩写,用于在Java类与XML之间建立映射,可以帮助开发人员非常方便的將XML和Java对象进行相互转换. 本文以一个简单 ...

  4. 文件重命名之动态改动ListView里指定Item中的组件属性

    在Android实际开发过程中常常会遇到,改动ListView中某一项的值.怎样达到这一目的呢? 方法主要有两种: 第一种方式:当ListView中某一项的值发生变化之后,又一次载入数据已达到更新Li ...

  5. NDK历史版本

    https://developer.android.google.cn/ndk/downloads/older_releases.html https://developer.android.goog ...

  6. roboware-studio 使用教程

    一.创建工作区 1.1 新建工作区 1.2 选择路径并添加工作区的名字 catkin_ws 二.创建程序包 创建ROS包并添加依赖 my_package roscpp std_msgs 三.添加并编写 ...

  7. 如何解决“因为计算机中丢失php_mbstring.dll”

    配置编译环境时,php.exe报系统错误,无法启动此程序,因为计算机中丢失php_mbstring.dll. 在C:\Windows找到php.ini文件,ctrl+f找到extension=php_ ...

  8. HD-ACM算法专攻系列(14)——find your present (2)

    问题描述: 源码: #include"iostream" #include"algorithm" using namespace std; bool cmp(i ...

  9. Microsoft Edge 首个 Chromium 内核版释出

    翻译功能释出 navigator.userAgent"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, ...

  10. python小项目之头像右上角加数字

    pillow介绍 一.Image类的属性:1.Format   2.Mode   3.Size    4.Palette    5.Info 二.类的函数:1.New   2.Open   3.Ble ...