First One

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)

Total Submission(s): 690    Accepted Submission(s): 205

Problem Description
soda has an integer array a1,a2,…,an.
Let S(i,j) be
the sum of ai,ai+1,…,aj.
Now soda wants to know the value below:

∑i=1n∑j=in(⌊log2S(i,j)⌋+1)×(i+j)

Note: In this problem, you can consider log20 as
0.

 
Input
There are multiple test cases. The first line of input contains an integer T,
indicating the number of test cases. For each test case:



The first line contains an integer n (1≤n≤105),
the number of integers in the array.

The next line contains n integers a1,a2,…,an (0≤ai≤105).
 
Output
For each test case, output the value.
 
Sample Input
1
2
1 1
 
Sample Output
12
 
Source
 

题目大意:对题目中的式子求结果。

解题思路:由于0<=ai<=10^5,0<n<=10^5,所以0<=S(i,j)<10^12<2^34,设k=⌊log2S(i,j)⌋+1则1<=k<=34,那么我们

每次枚举k时,求解出全部符合条件的(i+j),求和就可以。

而对于每个k,求解(i+j)时。先预处理出s[i](s[i]=a1+……+ai。则sum(i,j)=s[j]-s[i-1]),那么接下来仅仅需找到全部

满足2^(k-1)<=sum(i,j)<=2^k-1的(i+j)就可以。

对于求(i+j),我们再次枚举i,对每个i。求解出j的一个区间[l,r],使得对当前的i,有当l<=j<=r时,2^(k-1)

<=sum(i,j)<=2^k-1成立。那么对于当前的k,i,满足条件的i。j区间为[i,j](l<=j<=r)。这些区间相应同一个k和同一个i,这些区间的(i+j)的总和为:i*(r-l+1)+(r+l)*(r-l+1)/2。

枚举全然部的k和i,将全部和累加。

对于求解区间[l,r],如果k=a,在枚举i=b时,得到j的区间[L1,R1],那么同样的k,在枚举i=b+1时,得到j的区间[L2,R2]

一定不在区间[L1,R1]的左边,简单的说就是L2>L1。R2>R1。

因此查找l。r时能够降低范围。

代码例如以下:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <string>
#include <vector>
#include <deque>
#include <list>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <sstream>
#include <fstream>
#include <limits.h>
#define debug "output for debug\n"
#define pi (acos(-1.0))
#define eps (1e-6)
#define inf (1<<28)
#define sqr(x) (x) * (x)
#define mod 1000000007
using namespace std;
typedef long long ll;
typedef unsigned long long ULL; ll fl[35]={0,0,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536,131072,262144,524288,1048576,2097152,4194304,8388608,16777216,33554432,67108864,134217728,268435456,536870912,1073741824,2147483648,4294967296,8589934592};
ll fr[35]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535,131071,262143,524287,1048575,2097151,4194303,8388607,16777215,33554431,67108863,134217727,268435455,536870911,1073741823,2147483647,4294967295,8589934591,17179869183};
ll s[100005];
int main()
{
ll i,j,k,n,a,l,r,t;
scanf("%I64d",&t);
while(t--)
{
scanf("%I64d",&n);
for(i=1;i<=n;i++)
{
scanf("%I64d",&a);
s[i]=s[i-1]+a;
}
ll ans=0;
for(k=1;k<=34;k++)
{
l=1;
r=0; //移位操作控制sum(i,j)的范围。也能够用数组
//fl= k==1? 0:(1ll<<(k-1));fr=(1ll<<k)-1;
for(i=1;i<=n;i++)
{
l=max(i,l);
while(l<=n&&s[l]-s[i-1]<fl[k])//while(l<=n&&s[l]-s[i-1]<fl)
l++;
r=max(l-1,r);
while(r+1<=n&&s[r+1]-s[i-1]>=fl[k]&&s[r+1]-s[i-1]<=fr[k])//while(r+1<=n&&s[r+1]-s[i-1]>=fl[k]&&s[r+1]-s[i-1]<=fr)
r++;
if(l<=r)
ans+=(i*(r-l+1)+(r+l)*(r-l+1)/2)*k;
//ans+=(i+l+i+r)*(r-l+1)/2*k;
}
}
printf("%I64d\n",ans);
}
return 0;
}

HDU 5358 First One(枚举)的更多相关文章

  1. 2015多校第6场 HDU 5358 First One 枚举,双指针

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5358 题意:如题. 解法:观察式子发现,由于log函数的存在,使得这个函数的值域<=34,然后我 ...

  2. HDU 5358 尺取法+枚举

    题意:给一个数列,按如下公式求和. 分析:场上做的时候,傻傻以为是线段树,也没想出题者为啥出log2,就是S(i,j) 的二进制表示的位数.只能说我做题依旧太死板,让求和就按规矩求和,多考虑一下就能发 ...

  3. HDU 5358 First One(枚举)

    这道题假设依照表达式一个个来算肯定超时,下午时候想了一个O(nlogn*logn)的算法.可是t了.由于这道题卡的很紧几百个例子,必须nlogn的算法才干够ac 回到这道题,考虑log(sum(i,j ...

  4. Hdu 5358 First One (尺取法+枚举)

    题目链接: Hdu 5358 First One 题目描述: 数组a有n个元素,S[i,j]定义为a[i]+a[i+1]+.....+a[j],问:这个死东西等于多少? 解题思路: 二分肯定超,这个题 ...

  5. hdu 5358 First One

    题目链接:hdu 5358 思路不难理解,就是个尺取法而已,floor(log2X) + 1 就是求 X 的二进制表示的位数,对于题目来说这个值最多只是 30+,从这里入手开始枚举,运用尺取法可以达到 ...

  6. HDU 5358 多校第6场 First One

    First One Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Tota ...

  7. HDU 5358(2015多校联合训练赛第六场1006) First One (区间合并+常数优化)

    pid=5358">HDU 5358 题意: 求∑​i=1​n​​∑​j=i​n​​(⌊log​2​​S(i,j)⌋+1)∗(i+j). 思路: S(i,j) < 10^10 & ...

  8. hdu 5358 First One 2015多校联合训练赛#6 枚举

    First One Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Tota ...

  9. HDU 5778 abs (枚举)

    abs 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5778 Description Given a number x, ask positive ...

随机推荐

  1. 【LeetCode-面试算法经典-Java实现】【033-Search in Rotated Sorted Array(在旋转数组中搜索)】

    [033-Search in Rotated Sorted Array(在旋转数组中搜索)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Suppose a sort ...

  2. Codeforces 425A Sereja and Swaps(暴力枚举)

    题目链接:A. Sereja and Swaps 题意:给定一个序列,能够交换k次,问交换完后的子序列最大值的最大值是多少 思路:暴力枚举每一个区间,然后每一个区间[l,r]之内的值先存在优先队列内, ...

  3. Mina airQQ聊天 client篇(三)

    开发工具 (FlashBuilder4.7) 程序类型(Adobe Air) Flex Air做的桌面程序,效果还挺好看的.最主要是Socket这一块,它也是异步的,而且在Flex中的事件机制比較强大 ...

  4. UVA 11728 - Alternate Task 数学

    Little Hasan loves to play number games with his friends. One day they were playing a game whereone ...

  5. Android获取系统时间的多种方法

    Android中获取系统时间有多种方法,可分为Java中Calendar类获取,java.util.date类实现,还有android中Time实现. 现总结如下: 方法一: ? 1 2 3 4 5 ...

  6. [SCOI 2009] 生日快乐

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1024 [算法] 直接DFS,即可 [代码] #include<bits/std ...

  7. Java底层四个核心技术

    今天早起失败,加上忙碌的一天加班工作,没按计划总结Java相关的技术,刚看到下面的文章总结的不错,转载一下. Java有哪四个核心技术?首先,我们要了解一下java核心技术的重要性,它可以帮助我们举一 ...

  8. java生成6位随机数的5种方法

    转自:https://blog.csdn.net/u012491783/article/details/76862526/

  9. 34.QT模型(表格绘制)

    modellex.h #ifndef MODELEX_H #define MODELEX_H #include <QAbstractItemModel> #include <QVec ...

  10. 限制textfield的文字长度

    -(BOOL)textField:(UITextField *)textField shouldChangeCharactersInRange:(NSRange)range replacementSt ...