Code:

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = 20000000 + 4;
int n,m, sumv[maxn], node_cnt, root[maxn], A[maxn], arr[maxn];
struct Segment_Tree
{
int ls[maxn], rs[maxn];
void build(int l, int r, int &o)
{
if(l > r) return ;
o = ++node_cnt;
if(l == r) return ;
int mid = (l + r) >> 1;
build(l, mid, ls[o]);
build(mid + 1, r, rs[o]);
}
int update(int l, int r, int k, int o)
{
int oo = ++node_cnt;
sumv[oo] = sumv[o] + 1;
ls[oo] = ls[o];
rs[oo] = rs[o];
if(l == r) return oo;
int mid = (l + r) >> 1;
if(k <= mid) ls[oo] = update(l, mid, k, ls[o]);
else rs[oo] = update(mid + 1, r, k, rs[o]);
return oo;
}
int query(int u,int v, int l, int r,int k){
if(l == r) return l;
int mid = (l + r) >> 1;
int delta = sumv[ls[v]] - sumv[ls[u]];
if(delta >= k) return query(ls[u], ls[v], l, mid, k);
else return query(rs[u], rs[v], mid + 1, r, k - delta);
}
}T;
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1;i <= n; ++i)
{
scanf("%d",&A[i]);
arr[i] = A[i];
}
sort(arr + 1, arr + 1 + n);
T.build(1, n, root[0]);
for(int i = 1;i <= n; ++i)
{
int cur = lower_bound(arr + 1, arr + 1 + n, A[i]) - arr;
root[i] = T.update(1, n, cur, root[i - 1]);
}
for(int i = 1;i <= m; ++i)
{
int l, r, k;
scanf("%d%d%d",&l,&r,&k);
int pos = T.query(root[l - 1],root[r], 1, n, k);
printf("%d\n", arr[pos]);
}
return 0;
}

  

洛谷P3834 【模板】可持久化线段树 1 主席树的更多相关文章

  1. 洛谷P3834 [模板]可持久化线段树1(主席树) [主席树]

    题目传送门 可持久化线段树1(主席树) 题目背景 这是个非常经典的主席树入门题——静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定 ...

  2. 【洛谷 P3834】 可持久化线段树1(主席树)

    题目链接 主席树=可持久化权值线段树. 如果你不会可持久化线段树,请右转 如果你不会权值线段树,请自行脑补,就是线段树维护值域里有多少个数出现. 可持久化线段树是支持查询历史版本的. 我们对每个数都进 ...

  3. 洛谷.3834.[模板]可持久化线段树(主席树 静态区间第k小)

    题目链接 //离散化后范围1~cnt不要错 #include<cstdio> #include<cctype> #include<algorithm> //#def ...

  4. 洛谷.3835.[模板]可持久化平衡树(fhq treap)

    题目链接 对每次Merge(),Split()时产生的节点都复制一份(其实和主席树一样).时间空间复杂度都为O(qlogq).(应该更大些 因为rand()?内存真的爆炸..) 对于无修改的操作实际上 ...

  5. 洛谷P4559 [JSOI2018]列队 【70分二分 + 主席树】

    题目链接 洛谷P4559 题解 只会做\(70\)分的\(O(nlog^2n)\) 如果本来就在区间内的人是不用动的,区间右边的人往区间最右的那些空位跑,区间左边的人往区间最左的那些空位跑 找到这些空 ...

  6. ☆ [洛谷P2633] Count on a tree 「树上主席树」

    题目类型:主席树+\(LCA\) 传送门:>Here< 题意:给出一棵树.每个节点有点权.问某一条路径上排名第\(K\)小的点权是多少 解题思路 类似区间第\(K\)小,但放在了树上. 考 ...

  7. 【洛谷 P2633】 Count on a tree(主席树,树上差分)

    题目链接 思维难度0 实现难度7 建出主席树后用两点的状态减去lca和lca父亲的状态,然后在新树上跑第\(k\)小 #include <cstdio> #include <cstr ...

  8. 洛谷$P$2468 粟粟的书架 $[SDOI2010]$ 主席树

    正解:主席树 解题报告: 传送门! 题目大意是说,给定一个矩形,然后每次会给一个,这个大矩形中的一个小矩形,询问从小矩形中最少选多少个数字能满足它们之和大于等于给定数字$x$ 看起来很神的样子,完全不 ...

  9. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  10. P3919 【模板】可持久化数组 -初步探究主席树

    本篇blog主要是给自己(大家)看的. 感谢longlongzhu123奆佬(此人初二LCT)的指点,使本蒟蒻可以快速开始主席树入门. what is 主席树? $        $主席树这个名字只不 ...

随机推荐

  1. 有关DevExpress 安装后vs工具箱不显示图标的错误

    在https://www.devexpress.com/Support/Center/Question/Details/T214296/missing-icons-from-toolbox找到解决方法 ...

  2. Android 数字四舍五入

    BigDecimal b = new BigDecimal(hour).setScale(1, BigDecimal.ROUND_HALF_UP); setScale(int newScale, in ...

  3. c# rc4算法,加密解密类

    rc4算法,原理,以密匙生成256位的密匙流,然后以车轮式滚过源数据异或加密. /* * 由SharpDevelop创建. * 用户: YISH * 日期: 04/04/2015 * 时间: 03:0 ...

  4. OpenCart 如何安装 vQmod 教程

    vQmod (全称 Virtual Quick Mod),是 OpenCart (PHP 开源电商网站系统)上一个可以以虚拟方式修改原文件内容而设计的一个插件系统.它的使用很简单,我们先用 xml 的 ...

  5. hook的本质就是在本原可执行文件中加东西

    hook的本质就是在本原可执行文件中加东西. 本质就是添加东西:

  6. IDEA里面的facets和artifacts的讲解

    Facets: Facets表述了在Module中使用的各种各样的框架.技术和语言.这些Facets让Intellij IDEA知道怎么对待module内容,并保证与相应的框架和语言保持一致. 使用F ...

  7. 利用Java反射根据类的名称获取属性信息和父类的属性信息

    代码: import java.lang.reflect.Field; import java.util.ArrayList; import java.util.Arrays; import java ...

  8. PHP SOAP如何传入复杂对象

    Paymentexpress有一个SOAP服务方法Check3dsEnrollment(String username,String password, EnrolmentCheckRequest t ...

  9. linux 源码包安装拾遗

    源码包安装和apt-get/yum的区别 安装前的区别:概念上的区别 rpm和dpkg包是经过编译过的包,并且其安装位置由厂商说了算,厂商觉得安装在哪里合适,就会装在哪里,而源码包则是没有经过编译的文 ...

  10. HDU 5533 Dancing Stars on Me( 有趣的计算几何 )

    链接:传送门 题意:给出 n 个点,判断能不能构成一个正 n 边形,这 n 个点坐标是整数 思路:这道题关键就在与这 n 个点坐标是正整数!!!可以简单的分析,如果 n != 4,那一定就不能构成正 ...