题目描述:

输入m,n,分别表示苹果数与盘子的总数,要求输出苹果放在n个盘子的方法总数(注意511和151是一种情况),例如输入 7 3 输出8((7),(6,1),(5,2),(4,3),(5,1,1),(4,2,1),(3,3,1),(3,2,2))

思路:

最典型的解法整数分解,例如给定n个苹果,把苹果放到k个盘子里,允许有的盘子为空,不妨设 f(n , k ) (边缘条件为当 n = 0 ,1时,返回1,当 k = 1 时,返回1)表示结果,分析一下可以知道有两种放的方法,一种是有空盘,一种是没空盘。

没空盘的情况可以知道每个盘子里至少有一个苹果,也就是说这种情况的总数为 f ( n-k , k ) 。

而有空盘的情况,我们可以假设最后一个盘子为空,则这种情况的总数为f ( n , k-1 ) (无需考虑多个盘子为空的情况,递归时必然会出现)

所以状态转移方程为 f ( n , k ) = f ( n-k , k ) + f ( n , k-1 )

 import java.util.Scanner;

 /**
* 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,
* 问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。
*/
public class PlayApples { public static void main(String[] args) {
//输入读取参数
Scanner cin = new Scanner(System.in) ;
int apples = cin.nextInt() ;
int planes = cin.nextInt() ;
cin.close(); System.out.println(count(apples,planes)) ; } /**
* 最典型的整数分解
* 例如给定n个苹果,把苹果放到k个盘子里,允许有的盘子为空, 不妨设 f(m , n )
* (边缘条件为当 m == 0 ,1时,返回1,当 n == 1 时,返回1)表示结果,
* 分析一下可以知道有两中放的方法,一种是有空盘,一种是没空盘,
* 没空盘的情况可以知道每个盘子里至少有一个苹果,也就是说这种情况的总数为 f ( n-k , k ) 。
* 而有空盘的情况,我们可以假设最后一个盘子为空,则这种情况的总数为f ( n , k-1 ) (无需考虑多个盘子为空的情况,递归时必然会出现)
* 所以状态转移方程为 f ( n , k ) = f ( n-k , k ) + f ( n , k-1 )。
*
* 而如果是不允许有空盘子的情况,则可以由上面的情况推出,
* 设 d ( n , k ) 表示把n个苹果放到k个盘子里,不允许有空盘子的方法总数,
* 则有f ( n , k ) = Σ ( 1 <= i <= k ) d ( n , i )
* 所以 d ( n , k ) = f ( n , k ) - f ( n , k-1 )
*
* @param m 苹果数量
* @param n 盘子数量
* @return
*/
private static int count(int m, int n) {
//n为0 是错误的,故返回0
if(n == 0){
return 0 ;
}
//m == 0,1时和 n == 1时均只有一种放法
if(m == 0 || n == 1 || m == 1 ){
return 1 ;
}else if(m < 0){
//m < 0 时,也是错误的情形,所以返回0
return 0 ;
}else{
//递归调用
return count(m-n,n) + count(m,n-1) ;
}
}
}

Code

扩展:

而如果是不允许有空盘子的情况,则可以由上面的情况推出,设 d ( n , k ) 表示把n个苹果放到k个盘子里,不允许有空盘子的方法总数,则有

f ( n , k ) = Σ ( 1 <= i <= k ) d ( n , i ) 所以 d ( n , k ) = f ( n , k ) - f ( n , k-1 )

华为OJ平台——放苹果(典型整数划分问题)的更多相关文章

  1. 华为OJ之放苹果

    题目描述: 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法.输入每个用例包含二个整数M和N.0<=m< ...

  2. 华为OJ:2041 放苹果

    这道题难点不在于代码怎么写,而是思路怎么想. 感觉一般这样的题要么你理好一个思路要么你最后总结出一个公式,要么你自己模拟它的运作方式,用迭代,或者递归的方式来做. 有点像我们曾经学的排列组合. 对于m ...

  3. 华为OJ平台——字符串分隔

    题目描述: 连续输入字符串,请按长度为8拆分每个字符创 后输出到新的字符串数组: 长度不是8整数倍的字符串请在后面补数字0,空字符串不处理 输入 连续输入字符串(输入两次,每个字符长长度小于100)输 ...

  4. 华为OJ平台——输出最小的k个数

    输入n个整数,输出其中最小的k个. 详细描述: 接口说明 原型: bool GetMinK(unsignedint uiInputNum, int *pInputArray, unsignedint ...

  5. 华为OJ平台——矩阵乘法

    题目描述: 如果A是个x行y列的矩阵,B是个y行z列的矩阵,把A和B相乘,其结果将是另一个x行z列的矩阵C. 输入: 1.第一个矩阵的行数 2.第一个矩阵的列数(也是第二个矩阵的行数) 3.第二个矩阵 ...

  6. 放苹果(整数划分变形题 水)poj1664

    问题:把M个相同的苹果放在N个相同的盘子里.同意有的盘子空着不放,问共同拥有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法. 例子 : 1 7 3 ---------------8 ...

  7. 华为OJ平台——整数的二进制中1的个数

    题目描述: 输入一个整数,求该整数的二进制表达中有多少个1.例如输入10,由于其二进制表示为1010,有两个1,因此输出2. 思路: 这是一道很基本的考查位运算的面试题.包括微软在内的很多公司都曾采用 ...

  8. 华为OJ平台试题 —— 数组:输入n个整数,输出当中最小的k个

    输入n个整数.输出当中最小的k个: 代码: /*  * 输入n个整数,输出当中最小的k个.  * 输入说明:1.输入两个整数:2.输入一个整数数组  * 输出说明:输出一个整数数组  */ <p ...

  9. 华为OJ平台——求最大连续bit数

    题目描述: 求一个byte数字对应的二进制数字中1的最大连续数,例如3的二进制为00000011,最大连续2个1 输入: 一个byte型的数字    输出: 对应的二进制数字中1的最大连续数 思路: ...

随机推荐

  1. [dts]Device Tree机制

    转自:http://blog.csdn.net/machiner1/article/details/47805069 ------------------Based on linux 3.10.24 ...

  2. js工具类 ----正则

    function(value){  if(value){   var reg=new RegExp("^[a-zA-Z0-9_-]+$");   return reg.test(v ...

  3. PHP解码unicode编码中文字符代码示例

    在抓取某网站数据,结果在数据包中发现了一串编码的数据:"......\u65b0\u6d6a\u5fae\u535a......", 这其实是中文被unicode编码后了的数据,想 ...

  4. 11个实用的Apache .htaccess配置

    <IfModule mod_rewrite.c>RewriteEngine onRewriteBase /RewriteRule cat_([0-9]{1,})_([0-9]{1,})_( ...

  5. 我的Android最佳实践之—— 常用的Intent.Action(转)

    1.从google搜索内容 Intent intent = new Intent(); intent.setAction(Intent.ACTION_WEB_SEARCH); intent.putEx ...

  6. MySQL命名、设计及使用规范--------来自标点符的《MySQL命名、设计及使用规范》

    原文地址:http://www.biaodianfu.com/mysql-best-practices.html 最近在看MySQL相关的内容,整理如下规范,作为一名刚刚学习MySQL的菜鸟,整理的内 ...

  7. 最大熵的Java实现

    这是一个最大熵的简明Java实现,提供训练与预测接口.训练采用GIS训练算法,附带示例训练集.本文旨在介绍最大熵的原理.分类和实现,不涉及公式推导或其他训练算法,请放心食用. 最大熵理论 简介 最大熵 ...

  8. CF 161D Distance in Tree 树形DP

    一棵树,边长都是1,问这棵树有多少点对的距离刚好为k 令tree(i)表示以i为根的子树 dp[i][j][1]:在tree(i)中,经过节点i,长度为j,其中一个端点为i的路径的个数dp[i][j] ...

  9. python实现字体闪图

    !/usr/bin/env python from future import print_function import os.path import sys from optparse impor ...

  10. group by 获取总记录数

    sql中有group buy 后如何获取总记录的条数,来生成分页 当然一般情况下我是不推荐这样的分页,如果你真的需要应该是你表结构设计有问题 1.适用于所有情况 $db = new PDO(DSN.. ...