Georgia and Bob
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 7233   Accepted: 2173

Description

Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, number the grids from left to right by 1, 2, 3, ..., and place N chessmen on different grids, as shown in the following figure for example: 

Georgia and Bob move the chessmen in turn. Every time a player will choose a chessman, and move it to the left without going over any other chessmen or across the left edge. The player can freely choose number of steps the chessman moves, with the constraint that the chessman must be moved at least ONE step and one grid can at most contains ONE single chessman. The player who cannot make a move loses the game.

Georgia always plays first since "Lady first". Suppose that Georgia and Bob both do their best in the game, i.e., if one of them knows a way to win the game, he or she will be able to carry it out.

Given the initial positions of the n chessmen, can you predict who will finally win the game?

Input

The first line of the input contains a single integer T (1 <= T <= 20), the number of test cases. Then T cases follow. Each test case contains two lines. The first line consists of one integer N (1 <= N <= 1000), indicating the number of chessmen. The second line contains N different integers P1, P2 ... Pn (1 <= Pi <= 10000), which are the initial positions of the n chessmen.

Output

For each test case, prints a single line, "Georgia will win", if Georgia will win the game; "Bob will win", if Bob will win the game; otherwise 'Not sure'.

Sample Input

2
3
1 2 3
8
1 5 6 7 9 12 14 17

Sample Output

Bob will win
Georgia will win

Source

 
转化成nim游戏,两个石子之间的间隔就是石子个数
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int MAX_N = ;
int p[MAX_N]; int main()
{
int t;
scanf("%d",&t);
while(t--) {
int N;
scanf("%d",&N);
for(int i = ; i < N; ++i) {
scanf("%d",&p[i]);
}
if(N % == ) p[N++] = ;
sort(p, p + N); int x = ;
for(int i = ; i + < N; i += ) {
x ^= (p[i + ] - p[i] - );
} if(x == ) printf("Bob will win\n");
else printf("Georgia will win\n");
}
//cout << "Hello world!" << endl;
return ;
}

poj 1704的更多相关文章

  1. POJ 1704 Georgia and Bob(阶梯博弈+证明)

    POJ 1704 题目链接 关于阶梯博弈有如下定理: 将所有奇数阶梯看作n堆石头,做Nim,将石头从奇数堆移动到偶数堆看作取走石头,同样地,异或值不为0(利己态)时,先手必胜. 定理证明看此博:htt ...

  2. poj 1704 Georgia and Bob(阶梯博弈)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9363   Accepted: 3055 D ...

  3. 阶梯博弈&POJ 1704

    阶梯博弈: 先借用别人的一幅图片.(1阶梯之前还有一个0阶梯未画出) 阶梯博弈的最初定义是这样的:每一个阶梯只能向它的前一个阶梯移动本阶梯的点,直至最后无法移动的为输. 那么,利用NIM,只计算奇数级 ...

  4. POJ 1704 Georgia and Bob (Nim游戏变形)

    题目:http://poj.org/problem?id=1704 思路:Nim游戏策略,做如下转换,如果N是偶数,则两两配对,将两个数之间的格子数(距离)看做成这一堆石头的数量. 如果N是奇数,则将 ...

  5. POJ 1704 Georgia and Bob【博弈】

    题目链接: http://poj.org/problem?id=1704 题意: 给定棋子及其在格子上的坐标,两个人轮流选择一个棋子向左移动,每次至少移动一格,但是不可以碰到其他棋子.无路可走的时候视 ...

  6. 【POJ 1704】 Georgia and Bob

    [题目链接] http://poj.org/problem?id=1704 [算法] 阶梯博弈 [代码] #include <algorithm> #include <bitset& ...

  7. 【poj 1704】Georgia and Bob

    Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9776 Accepted: 3222 Description Georgia a ...

  8. poj 1704 阶梯博弈

    转自http://blog.sina.com.cn/s/blog_63e4cf2f0100tq4i.html 今天在POJ做了一道博弈题..进而了解到了阶梯博弈...下面阐述一下我对于阶梯博弈的理解. ...

  9. poj 1704 Georgia and Bob(阶梯博弈)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8656   Accepted: 2751 D ...

随机推荐

  1. SQL基础篇---基本概念解析

    1.数据库database:保存表和其他相关SQL结构容器(一般是一个文件或者一组文件) 2.SQL (Structared Query Language):是一种专门用来与数据库沟通的语言,是一种结 ...

  2. Mybatis动态SQL

    1.动态SQL基本标签 •if •choose (when, otherwise) •trim (where, set) •foreach 2.IF 具体用法 <select id=" ...

  3. Linux下安装宋体以及微软雅黑字体

    最近工作用itext生成pdf在windows环境下没有出现中文乱码而在linux下出现中文乱码,打开pdf查看pdf编码,以及显示的编码,发现编码并没有对应.原因是使用的宋体和微软雅黑在linux环 ...

  4. 6.24AppCan移动开发者大会价值30万的展示机会归了谁?

    最近,小编的邮箱都被挤爆了! 来自开发者的邮件一封封涌进邮箱,VIP展位申请,TOP30 APP评选,感谢大家的积极参与,展位有限,APP名额有限,开发者的热情无限. 经过谨慎筛选.综合评定后,以下5 ...

  5. 切换两个activity

    下面是一个切换两个activity是过度动画效果实例:(注意里面的overridePendingTransition()方法)Java代码 1. @Override public void onCre ...

  6. arm-elf-gcc汇编代码个人理解

    arm-elf-gcc汇编代码个人理解 有关arm-elf-gcc的安装使用问题请参照本人博客的另一篇文章http://www.cnblogs.com/wsine/p/4664503.html 由于各 ...

  7. iTween基础之Fade(淡入淡出)

    一.基础介绍:二.基础属性 原文地址: http://blog.csdn.net/dingkun520wy/article/details/50923665 一.基础介绍 FadeTo:从当前透明度变 ...

  8. 通过find命令寻找文件并拷贝到一个指定目录方法详解

    有这样的一个需求,需要将一部分符合条件的文件从一个目录拷贝到另一个目录中,可以通过使用find命令从源目录查找到符合条件的文件然后使用cp命令拷贝到目标目录   将通过find命令找到的文件拷贝到一个 ...

  9. 如何教你在NIPS会议上批量下载历年的pdf文档(另附04~14年NIPS论文下载链接)

    如何获得NIPS会议上批量下载的链接? NIPS会议下载网址:http://papers.nips.cc/ a.点击打开上述网站,进入某一年的所有会议,例如2014年,如下图 b.然后对着当前网页点击 ...

  10. 项目中用到的js日期函数

    <script type="text/javascript">    //替换字符串      function Replace(str, from, to) {    ...