[实变函数]5.2 非负简单函数的 Lebesgue 积分
1 设 $$\bex \phi(x)=\sum_{i=1}^j c_i\chi_{E_i}(x),\quad c_i\geq 0, \eex$$
其中 $$\bex E_i\mbox{ 可测},\quad E_i\mbox{ 两两不交},\quad E=\cup_{i=1}^j E_i, \eex$$
则定义 $$\bex \int_E \phi(x)\rd x=\sum_{i=1}^j c_i\cdot mE_i. \eex$$
若 $A(\subset E)$ 可测, 则定义 $$\bex \int_A\phi(x)\rd x=\sum_{i=1}^j c_i\cdot m(E_i\cap A). \eex$$
2 例: $\dps{D(x)=\sedd{\ba{ll} 1,&x\in\bbQ,\\ 0,&x\in\bbR\bs \bbQ \ea}}$ 的积分为 $$\bex \int_{\bbR}D(x)\rd x =1\cdot m(\bbQ)+0\cdot m(\bbR\bs \bbQ)=0. \eex$$
3 性质: 设 $\phi(x),\psi(x)$ 为非负简单函数, 则
(1) 正齐次性 $$\bex c\geq 0\ra \int_Ec\phi(x)\rd x =c\int_E \phi(x)\rd x. \eex$$
证明: $$\beex \bea \int_Ec\phi(x)\rd x =\sum_{i=1}^j cc_i\cdot mE_i =c\sum_{i=1}^j c_i\cdot mE_i =c\int_E\phi(x)\rd x. \eea \eeex$$
(2) 有限可加性 $$\bex \int_E[\phi(x)+\psi(x)]\rd x =\int_E \phi(x)\rd x +\int_E \psi(x)\rd x. \eex$$
证明: $$\beex \bea &\quad \phi(x)=\sum_{i=1}^j c_i\chi_{E_i},\quad \psi(x)=\sum_{k=1}^l d_k\chi_{F_k}\\ &\ra \phi(x)+\psi(x) =\sum_{i=1}^j \sum_{k=1}^l (c_i+d_k)\chi_{E_i\cap F_k}\\ &\ra \int_E[\phi(x)+\psi(x)]\rd x =\sum_{i=1}^j \sum_{k=1}^l (c_i+d_k)\cdot m(E_i\cap F_k)\\ &\qquad\qquad\qquad \ \ = \sum_{i=1}^j c_i\sum_{k=1}^l m(E_i\cap F_k) +\sum_{k=1}^l d_k\sum_{i=1}^jm(E_i\cap F_k)\\ &\qquad\qquad\qquad \ \ =\sum_{i=1}^j c_i\cdot mE_i +\sum_{k=1}^l d_k\cdot mF_k\\ &\qquad\qquad\qquad \ \ = \int_E\phi(x)\rd x +\int_E\psi(x)\rd x. \eea \eeex$$
(3) 对积分区域的有限可加性 $$\bex A,B(\subset E)\mbox{ 可测}\ra \int_{A\cup B}\phi(x)\rd x =\int_A\phi(x)\rd x +\int_B\phi(x)\rd x. \eex$$
证明: $$\beex \bea \int_{A\cup B}\phi(x)\rd x &=\sum_{i=1}^j c_i\cdot m(E\cap(A\cup B))\\ &=\sum_{i=1}^j c_i \cdot [m(E\cap A)+m(E\cap B)]\\ &\quad\sex{\mbox{在可测集 }A\mbox{ 的定义中取试验集 }T=E\cap (A\cap B)}\\ &=\int_A\phi(x)\rd x +\int_B\phi(x)\rd x. \eea \eeex$$
(4) 单增积分区域的极限 $$\bex A_i(\subset E)\mbox{ 单增}\ra \lim_{i\to\infty}\int_{A_i}\phi(x)\rd x =\int_{\lim_{i\to\infty}A_i}\phi(x)\rd x. \eex$$
证明: $$\beex \bea \lim_{i\to\infty}\int_{A_i}\phi(x)\rd x &=\lim_{i\to\infty}\sum_{i=1}^j c_i\cdot m(E\cap A_i)\\ &=\sum_{i=1}^jc_i\cdot m \sex{E\cap \lim_{i\to\infty}A_i}\\ &=\int_{\lim_{i\to\infty}A_i}\phi(x)\rd x. \eea \eeex$$
4 作业: Page 132 T 2.
[实变函数]5.2 非负简单函数的 Lebesgue 积分的更多相关文章
- [实变函数]5.3 非负可测函数的 Lebesgue 积分
本节中, 设 $f,g,f_i$ 是可测集 $E$ 上的非负可测函数, $A,B$ 是 $E$ 的可测子集. 1 定义: (1) $f$ 在 $E$ 上的 Lebesgue 积分 ...
- [实变函数]5.1 Riemann 积分的局限性, Lebesgue 积分简介
1 Riemann 积分的局限性 (1) Riemann 积分与极限的条件太严: $$\bex f_k\rightrightarrows f\ra \lim \int_a^b f_k ...
- [实变函数]5.4 一般可测函数的 Lebesgue 积分
1定义 (1)$f$ 在 $E$ 上积分确定 $\lra$ $\dps{\int_Ef^+(x)\rd x<+\infty}$ 或 $\dps{\int_Ef^-(x)\rd x<+\in ...
- [实变函数]5.6 Lebesgue 积分的几何意义 $\bullet$ Fubini 定理
1 本节推广数学分析中的 Fubini 定理. 为此, 先引入 (1)(从低到高) 对 $A\subset \bbR^p, B\subset\bbR^q$, $$\bex A\times B=\sed ...
- [实变函数]5.5 Riemann 积分和 Lebesgue 积分
1 记号: 一元函数 $f$ 在 $[a,b]$ 上的 (1)Riemann 积分: $\dps{(R)\int_a^b f(x)\rd x}$; (2)Lebesgue 积分: $\dps{(L)\ ...
- 【转】17种常用的JS正则表达式 非负浮点数 非负正数.
<input type='text' id='SYS_PAGE_JumpPage' name='SYS_PAGE_JumpPage' size='3' maxlength='5' onkeyup ...
- 图论(四)------非负权有向图的单源最短路径问题,Dijkstra算法
Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负. Dijkstra算法是贪婪算法的一个很好的例子.设置一顶点集合S,从源点s到集合中的顶点的最终最短路径 ...
- [饭后算法系列] 数组中"和非负"的最长子数组
1. 问题 给定一列数字数组 a[n], 求这个数组中最长的 "和>=0" 的子数组. (注: "子数组"表示下标必须是连续的. 另一个概念"子 ...
- HDOJ-1002 A + B Problem II (非负大整数相加)
http://acm.hdu.edu.cn/showproblem.php?pid=1002 输入的数都是正整数,比较好处理,注意进位. //非负大整数加法 # include <stdio.h ...
随机推荐
- VPS搭建VPN(pptpd)
环境:Ubuntu Server 12.04 下载FQ程序 wget http://cdxf.yun.ftn.qq.com/ftn_handler/40ad8a2875adf1f7b5193f54a5 ...
- 记录Cat类的个体数目
B.记录Cat类的个体数目 Time Limit: 1000 MS Memory Limit: 32768 K Total Submit: 22 (17 users) Total Accepted: ...
- java.lang.OutOfMemoryError: unable to create new native thread如何解决
工作中碰到过这个问题好几次了,觉得有必要总结一下,所以有了这篇文章,这篇文章分为三个部分:认识问题.分析问题.解决问题. 一.认识问题: 首先我们通过下面这个 测试程序 来认识这个问题:运行的环境 ( ...
- Instructions函数对照表:02 xmmintrin.h与SSE指令集[转]
更多详情见——http://www.cnblogs.com/zyl910/archive/2012/04/26/md00.htmlSIMD函数整理:00 索引贴 R:寄存器.M:64位MM寄存器:X: ...
- sublime安装sftp和ctags插件
1. 安装Package Control插件 , 安装是通过Sublime Text 2控制台.这是通过按Ctrl + `快捷访问.一旦打开,粘贴以下命令到控制台. 输入以下python代码 subl ...
- ThreadContext
//#define UseThreadContext using System; using System.Collections.Generic; using System.Linq; using ...
- pouchdb Conflicts
Conflicts are an unavoidable reality when dealing with distributed systems. And make no mistake: cli ...
- 微软发布了ASP.NET WebHooks预览版
微软 近期发布了ASP.NET WebHooks的预览版 ,这是一个可用于创建及使用Webhook功能的库.WebHooks支持MVC 5及WebApi 2. Webhook是一种通过HTTP实现用户 ...
- Innodb IO优化 — 数据库表设计 转
数据库表设计这块学问比较多,我这里单从互联网角度出发同时结合Innodb的特性给出一些设计方法供大家参考.本文构建大概分两分部分:Innodb的特性及设计中如何利用这种特性. Innodb特性: In ...
- java提供的默认list排序方法-转
1.java提供的默认list排序方法 主要代码: List<String> list = new ArrayList();list.add("刘媛媛"); list. ...