[实变函数]5.2 非负简单函数的 Lebesgue 积分
1 设 $$\bex \phi(x)=\sum_{i=1}^j c_i\chi_{E_i}(x),\quad c_i\geq 0, \eex$$
其中 $$\bex E_i\mbox{ 可测},\quad E_i\mbox{ 两两不交},\quad E=\cup_{i=1}^j E_i, \eex$$
则定义 $$\bex \int_E \phi(x)\rd x=\sum_{i=1}^j c_i\cdot mE_i. \eex$$
若 $A(\subset E)$ 可测, 则定义 $$\bex \int_A\phi(x)\rd x=\sum_{i=1}^j c_i\cdot m(E_i\cap A). \eex$$
2 例: $\dps{D(x)=\sedd{\ba{ll} 1,&x\in\bbQ,\\ 0,&x\in\bbR\bs \bbQ \ea}}$ 的积分为 $$\bex \int_{\bbR}D(x)\rd x =1\cdot m(\bbQ)+0\cdot m(\bbR\bs \bbQ)=0. \eex$$
3 性质: 设 $\phi(x),\psi(x)$ 为非负简单函数, 则
(1) 正齐次性 $$\bex c\geq 0\ra \int_Ec\phi(x)\rd x =c\int_E \phi(x)\rd x. \eex$$
证明: $$\beex \bea \int_Ec\phi(x)\rd x =\sum_{i=1}^j cc_i\cdot mE_i =c\sum_{i=1}^j c_i\cdot mE_i =c\int_E\phi(x)\rd x. \eea \eeex$$
(2) 有限可加性 $$\bex \int_E[\phi(x)+\psi(x)]\rd x =\int_E \phi(x)\rd x +\int_E \psi(x)\rd x. \eex$$
证明: $$\beex \bea &\quad \phi(x)=\sum_{i=1}^j c_i\chi_{E_i},\quad \psi(x)=\sum_{k=1}^l d_k\chi_{F_k}\\ &\ra \phi(x)+\psi(x) =\sum_{i=1}^j \sum_{k=1}^l (c_i+d_k)\chi_{E_i\cap F_k}\\ &\ra \int_E[\phi(x)+\psi(x)]\rd x =\sum_{i=1}^j \sum_{k=1}^l (c_i+d_k)\cdot m(E_i\cap F_k)\\ &\qquad\qquad\qquad \ \ = \sum_{i=1}^j c_i\sum_{k=1}^l m(E_i\cap F_k) +\sum_{k=1}^l d_k\sum_{i=1}^jm(E_i\cap F_k)\\ &\qquad\qquad\qquad \ \ =\sum_{i=1}^j c_i\cdot mE_i +\sum_{k=1}^l d_k\cdot mF_k\\ &\qquad\qquad\qquad \ \ = \int_E\phi(x)\rd x +\int_E\psi(x)\rd x. \eea \eeex$$
(3) 对积分区域的有限可加性 $$\bex A,B(\subset E)\mbox{ 可测}\ra \int_{A\cup B}\phi(x)\rd x =\int_A\phi(x)\rd x +\int_B\phi(x)\rd x. \eex$$
证明: $$\beex \bea \int_{A\cup B}\phi(x)\rd x &=\sum_{i=1}^j c_i\cdot m(E\cap(A\cup B))\\ &=\sum_{i=1}^j c_i \cdot [m(E\cap A)+m(E\cap B)]\\ &\quad\sex{\mbox{在可测集 }A\mbox{ 的定义中取试验集 }T=E\cap (A\cap B)}\\ &=\int_A\phi(x)\rd x +\int_B\phi(x)\rd x. \eea \eeex$$
(4) 单增积分区域的极限 $$\bex A_i(\subset E)\mbox{ 单增}\ra \lim_{i\to\infty}\int_{A_i}\phi(x)\rd x =\int_{\lim_{i\to\infty}A_i}\phi(x)\rd x. \eex$$
证明: $$\beex \bea \lim_{i\to\infty}\int_{A_i}\phi(x)\rd x &=\lim_{i\to\infty}\sum_{i=1}^j c_i\cdot m(E\cap A_i)\\ &=\sum_{i=1}^jc_i\cdot m \sex{E\cap \lim_{i\to\infty}A_i}\\ &=\int_{\lim_{i\to\infty}A_i}\phi(x)\rd x. \eea \eeex$$
4 作业: Page 132 T 2.
[实变函数]5.2 非负简单函数的 Lebesgue 积分的更多相关文章
- [实变函数]5.3 非负可测函数的 Lebesgue 积分
本节中, 设 $f,g,f_i$ 是可测集 $E$ 上的非负可测函数, $A,B$ 是 $E$ 的可测子集. 1 定义: (1) $f$ 在 $E$ 上的 Lebesgue 积分 ...
- [实变函数]5.1 Riemann 积分的局限性, Lebesgue 积分简介
1 Riemann 积分的局限性 (1) Riemann 积分与极限的条件太严: $$\bex f_k\rightrightarrows f\ra \lim \int_a^b f_k ...
- [实变函数]5.4 一般可测函数的 Lebesgue 积分
1定义 (1)$f$ 在 $E$ 上积分确定 $\lra$ $\dps{\int_Ef^+(x)\rd x<+\infty}$ 或 $\dps{\int_Ef^-(x)\rd x<+\in ...
- [实变函数]5.6 Lebesgue 积分的几何意义 $\bullet$ Fubini 定理
1 本节推广数学分析中的 Fubini 定理. 为此, 先引入 (1)(从低到高) 对 $A\subset \bbR^p, B\subset\bbR^q$, $$\bex A\times B=\sed ...
- [实变函数]5.5 Riemann 积分和 Lebesgue 积分
1 记号: 一元函数 $f$ 在 $[a,b]$ 上的 (1)Riemann 积分: $\dps{(R)\int_a^b f(x)\rd x}$; (2)Lebesgue 积分: $\dps{(L)\ ...
- 【转】17种常用的JS正则表达式 非负浮点数 非负正数.
<input type='text' id='SYS_PAGE_JumpPage' name='SYS_PAGE_JumpPage' size='3' maxlength='5' onkeyup ...
- 图论(四)------非负权有向图的单源最短路径问题,Dijkstra算法
Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负. Dijkstra算法是贪婪算法的一个很好的例子.设置一顶点集合S,从源点s到集合中的顶点的最终最短路径 ...
- [饭后算法系列] 数组中"和非负"的最长子数组
1. 问题 给定一列数字数组 a[n], 求这个数组中最长的 "和>=0" 的子数组. (注: "子数组"表示下标必须是连续的. 另一个概念"子 ...
- HDOJ-1002 A + B Problem II (非负大整数相加)
http://acm.hdu.edu.cn/showproblem.php?pid=1002 输入的数都是正整数,比较好处理,注意进位. //非负大整数加法 # include <stdio.h ...
随机推荐
- UIview 学习与自定义--ios
UIView *view1=[[UIView alloc] initWithFrame:CGRectMake(50, 50, 100, 100)]; view1.backgroundColor=[UI ...
- Python合并两个numpy矩阵
numpy是Python用来科学计算的一个非常重要的库,numpy主要用来处理一些矩阵对象,可以说numpy让Python有了Matlab的味道. 实际的应用中,矩阵的合并是一个经常发生的操作,如何利 ...
- Integer.parseInt()和Integer.valueOf()有什么区别
jdk的源代码的时候注意到Integer.parseInt(s) 和 Integer.valueOf(s)的具体代码的实现有所区别: Java代码 public static int parseInt ...
- sublime个人快捷键
ctrl+alt+f = 代码格式化(html,js) ctrl+d = 选中相同内容 alt+shift+w = 为内容添加新标签 ctrl+shift+a = 选择标签内的内容(再按一 ...
- HBase(一): c#访问hbase组件开发
HDP2.4安装系列介绍了通过ambari创建hbase集群的过程,但工作中一直采用.net的技术路线,如何去访问基于Java搞的Hbase呢? Hbase提供基于Java的本地API访问,同时扩展了 ...
- javassist AOP
对于AOP,这个概念,不用解释,主要用途很多,我这里主要是为了后续研究如何实现APM做准备.前面研究了动态代理实现AOP,考虑到性能的问题,改用javassist直接修改直接码实现! javassis ...
- S盒
在密码学中,一个S盒(Substitution-box,置换盒)是对称密钥算法执行置换计算的基本结构.在块密码中,它们通常用于模糊密钥和密文之间的关系——香农的混淆理论.[1] 通常,S-Box接受特 ...
- [原]Fedora Linux环境下的应用工具总结
一.办公类软件 1.Office办公:WPS 二.网络通信类软件 1.浏览器:Chrome 2.远程桌面:rdesktop(适用于Windows系列) 三.操作系统设置与优化 1.3D桌面管理:Com ...
- [原]在Fedora 20环境下安装系统内核源代码
1.安装Kernel Headers(头文件) 通过安装kernel-devel RPM包就可以得到Kernel Headers,但默认情况下没有被Fedora 20安装.通过DVD ISO 或者 y ...
- 获取在线人数 CNZZ 和 51.la
string Cookies = string.Empty; /// <summary> /// 获取在线人数 (51.la统计器) /// </summary> /// &l ...