leetcode:Unique Binary Search Trees
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
class Solution {
public:
int numTrees(int n) {
vector<int> num;
num.push_back(1); //在容器尾端插入一项数据,设置num[0]=1
for(int i=1; i<=n; i++){
num.push_back(0); //每次先将num[i]设置为0
if(i<3)
num[i]=i; //易知num[1]=1,num[2]=2
else{
for(int j=1; j<=i; j++)
num[i]+=num[j-1]*num[i-j]; //j为root节点,其左子树种数为j-1,右子树种数为i-j
}
}
return num[n];
}
};
其他解法:
1、1ms in C++ By Using Theorem From Graph Theory
This is my code. I use the property that the number of unique binary trees or n vertex is
{(2n)(2n-1)(2n-2)....(n+2)}/{(n)(n-1)....(2)(1)}
class Solution {
public:
int numTrees(int n) {
long long result = 1;
long long temp = 1;
for(int i = 2*n; i > n; i--){
result *= i;
temp *= (i-n);
if (result % temp == 0){
result /= temp;
temp = 1;
}
}
return result/(n+1);
}
};
2、2ms c++ using dp(动态规划)
class Solution {
public:
int numTrees(int n){
int arr[n+1][n+1];
memset(arr,0,sizeof(arr));
for(int len=1; len<=n; len++){
for(int j=1; j<=n-len+1; j++){
if(len == 1) arr[len][j] = 1;
else{
arr[len][j] += arr[len-1][j+1];
arr[len][j] += arr[len-1][j];
for(int k=1;k<len;k++) arr[len][j] += (arr[k][j]*arr[len-k-1][j+k+1]);
}
}
}
return arr[n][1];
}
};
3、
class Solution {
public:
int numTrees(int n) {
if(n==0) return 0;
int s[n+1];
int r;
s[0] = 1;
for(int i=1; i<n+1; i++)
{
s[i] = 0;
for(int l=0; l<i; l++)
{
r = i-1-l;
s[i] = s[i]+s[l]*s[r];
}
}
return s[n];
}
};
leetcode:Unique Binary Search Trees的更多相关文章
- [leetcode]95. Unique Binary Search Trees II给定节点形成不同BST的集合
Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ...
- [LeetCode] 95. Unique Binary Search Trees II(给定一个数字n,返回所有二叉搜索树) ☆☆☆
Unique Binary Search Trees II leetcode java [LeetCode]Unique Binary Search Trees II 异构二叉查找树II Unique ...
- Java for LeetCode 095 Unique Binary Search Trees II
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...
- [LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树
Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n? Example ...
- [LeetCode] 95. Unique Binary Search Trees II 独一无二的二叉搜索树之二
Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ...
- [LeetCode] 95. Unique Binary Search Trees II 唯一二叉搜索树 II
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...
- [LeetCode] 96. Unique Binary Search Trees 唯一二叉搜索树
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- LeetCode之“动态规划”:Unique Binary Search Trees && Unique Binary Search Trees II
1. Unique Binary Search Trees 题目链接 题目要求: Given n, how many structurally unique BST's (binary search ...
- [LeetCode] 96. Unique Binary Search Trees(给定一个数字n,有多少个唯一二叉搜索树) ☆☆☆
[Leetcode] Unique binary search trees 唯一二叉搜索树 Unique Binary Search Trees leetcode java 描述 Given n, h ...
随机推荐
- SQL 基本(Head First)
CREATE TABLE my_contacts( last_name VARCHAR(30), first_name VARCHAR(30), email VARCHAR(50), gender C ...
- byte和hexstring,int,string等的转换类
public class HexConversion { /** * 16进制数的字符串转字节数组(16进制转字节数组) * * @param hexString * 16进制字符串 * @retur ...
- aspose.cell 自定义模板 SUM无效
数字类型的单元格, 显示 解决方案: 绑定的DataTable的列为字符串类型. 应该将其设置成数字类型的列
- input输入框的border-radius属性在IE8下的完美兼容
在工作中我们发现搜索框大部分都是有圆角的,为此作为经验不足的前端人员很容易就想到,给input标签添加border-radius属性不就解决了嘛.不错方法确实是这样,但是不要忘了border-radi ...
- PageControl(弹性滚动)
使用网上源码KYAnimatedPageControl self.pageControl = [[KYAnimatedPageControl alloc]initWithFrame:CGRec ...
- POJ 1961
#include<iostream> #include<stdio.h> #define MAXN 1000001 using namespace std; char c[MA ...
- Android中的Adapter总结
一.Adapter的介绍 An Adapter object acts as a bridge between an AdapterView and the underlying data for t ...
- Razor视图引擎 语法学习(一)
ASP.NET MVC是一种构建web应用程序的框架,它将一般的MVC(Model-View-Controller)模式应用于ASP.NET框架: ASP.NET约定优于配置:基本分为模型(对实体数据 ...
- Educational Codeforces Round 4 D. The Union of k-Segments 排序
D. The Union of k-Segments You re given n segments on the coordinate axis Ox and the number k. The ...
- 李洪强iOS开发之OC面向对象—多态
OC面向对象—多态 一.基本概念 多态在代码中的体现,即为多种形态,必须要有继承,没有继承就没有多态. 在使用多态是,会进行动态检测,以调用真实的对象方法. 多态在代码中的体现即父类指针指向子类对象. ...