Given n, how many structurally unique BST's (binary search trees) that store values 1...n?

For example,
Given n = 3, there are a total of 5 unique BST's.

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
注意:二分查找树的定义是,左子树节点均小于root,右子树节点均大于root!不要想当然地将某个点作为root时,认为其他所有节点都能全部放在left/right中,除非这个点是 min 或者 max 的。
 
分析:本题其实关键是递推过程的分析,n个点中每个点都可以作为root,当 i 作为root时,小于 i  的点都只能放在其左子树中,大于 i 的点只能放在右子树中,此时只需求出左、右子树各有多少种,二者相乘即为以 i 作为root时BST的总数。
            开始时,我尝试用递归实现,但是超时了,可见系统对运行时间有要求。因为递归过程中存在大量的重复计算,从n一层层往下递归,故考虑类似于动态规划的思想,让底层的计算结果能够被重复利用,故用一个数组存储中间计算结果(即 1~n-1 对应的BST数目),这样只需双层循环即可,代码如下:
class Solution {
public:
int numTrees(int n) {
vector<int> num;
num.push_back(1); //在容器尾端插入一项数据,设置num[0]=1
for(int i=1; i<=n; i++){
num.push_back(0); //每次先将num[i]设置为0
if(i<3)
num[i]=i; //易知num[1]=1,num[2]=2
else{
for(int j=1; j<=i; j++)
num[i]+=num[j-1]*num[i-j]; //j为root节点,其左子树种数为j-1,右子树种数为i-j
}
}
return num[n];
}
};

 其他解法:

1、1ms in C++ By Using Theorem From Graph Theory

This is my code. I use the property that the number of unique binary trees or n vertex is

{(2n)(2n-1)(2n-2)....(n+2)}/{(n)(n-1)....(2)(1)}

class Solution {
public:
int numTrees(int n) {
long long result = 1;
long long temp = 1;
for(int i = 2*n; i > n; i--){
result *= i;
temp *= (i-n);
if (result % temp == 0){
result /= temp;
temp = 1;
}
}
return result/(n+1);
}
};

2、2ms c++ using dp(动态规划)

class Solution {
public:
int numTrees(int n){
int arr[n+1][n+1];
memset(arr,0,sizeof(arr));
for(int len=1; len<=n; len++){
for(int j=1; j<=n-len+1; j++){
if(len == 1) arr[len][j] = 1;
else{
arr[len][j] += arr[len-1][j+1];
arr[len][j] += arr[len-1][j];
for(int k=1;k<len;k++) arr[len][j] += (arr[k][j]*arr[len-k-1][j+k+1]);
}
}
}
return arr[n][1];
}
};

3、

class Solution {
public:
int numTrees(int n) {
if(n==0) return 0;
int s[n+1];
int r;
s[0] = 1;
for(int i=1; i<n+1; i++)
{
s[i] = 0;
for(int l=0; l<i; l++)
{
r = i-1-l;
s[i] = s[i]+s[l]*s[r];
}
}
return s[n];
}
};

  

 

 

 

leetcode:Unique Binary Search Trees的更多相关文章

  1. [leetcode]95. Unique Binary Search Trees II给定节点形成不同BST的集合

    Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ...

  2. [LeetCode] 95. Unique Binary Search Trees II(给定一个数字n,返回所有二叉搜索树) ☆☆☆

    Unique Binary Search Trees II leetcode java [LeetCode]Unique Binary Search Trees II 异构二叉查找树II Unique ...

  3. Java for LeetCode 095 Unique Binary Search Trees II

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  4. [LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n? Example ...

  5. [LeetCode] 95. Unique Binary Search Trees II 独一无二的二叉搜索树之二

    Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ...

  6. [LeetCode] 95. Unique Binary Search Trees II 唯一二叉搜索树 II

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  7. [LeetCode] 96. Unique Binary Search Trees 唯一二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  8. LeetCode之“动态规划”:Unique Binary Search Trees && Unique Binary Search Trees II

    1. Unique Binary Search Trees 题目链接 题目要求: Given n, how many structurally unique BST's (binary search ...

  9. [LeetCode] 96. Unique Binary Search Trees(给定一个数字n,有多少个唯一二叉搜索树) ☆☆☆

    [Leetcode] Unique binary search trees 唯一二叉搜索树 Unique Binary Search Trees leetcode java 描述 Given n, h ...

随机推荐

  1. SQL 基本(Head First)

    CREATE TABLE my_contacts( last_name VARCHAR(30), first_name VARCHAR(30), email VARCHAR(50), gender C ...

  2. byte和hexstring,int,string等的转换类

    public class HexConversion { /** * 16进制数的字符串转字节数组(16进制转字节数组) * * @param hexString * 16进制字符串 * @retur ...

  3. aspose.cell 自定义模板 SUM无效

    数字类型的单元格, 显示   解决方案: 绑定的DataTable的列为字符串类型. 应该将其设置成数字类型的列

  4. input输入框的border-radius属性在IE8下的完美兼容

    在工作中我们发现搜索框大部分都是有圆角的,为此作为经验不足的前端人员很容易就想到,给input标签添加border-radius属性不就解决了嘛.不错方法确实是这样,但是不要忘了border-radi ...

  5. PageControl(弹性滚动)

    使用网上源码KYAnimatedPageControl     self.pageControl = [[KYAnimatedPageControl alloc]initWithFrame:CGRec ...

  6. POJ 1961

    #include<iostream> #include<stdio.h> #define MAXN 1000001 using namespace std; char c[MA ...

  7. Android中的Adapter总结

    一.Adapter的介绍 An Adapter object acts as a bridge between an AdapterView and the underlying data for t ...

  8. Razor视图引擎 语法学习(一)

    ASP.NET MVC是一种构建web应用程序的框架,它将一般的MVC(Model-View-Controller)模式应用于ASP.NET框架: ASP.NET约定优于配置:基本分为模型(对实体数据 ...

  9. Educational Codeforces Round 4 D. The Union of k-Segments 排序

    D. The Union of k-Segments   You re given n segments on the coordinate axis Ox and the number k. The ...

  10. 李洪强iOS开发之OC面向对象—多态

    OC面向对象—多态 一.基本概念 多态在代码中的体现,即为多种形态,必须要有继承,没有继承就没有多态. 在使用多态是,会进行动态检测,以调用真实的对象方法. 多态在代码中的体现即父类指针指向子类对象. ...