topcoder srm 420 div1
problem1 link
暴力即可。因为即便所有数字的和是50,50所有的不同的划分数只有204226中。所以最长的循环也就这么大。
problem2 link
令$f[i][j]$表示有$i$个红色和$j$个黑色时最大的期望,那么:
(1)当$j=0$时,$f[i][0]=f[i-1][0]+1$;
(2)当$j>0$但是$i=0$时,$f[i][j]=0$;
(3)当$j>0$且$i>0$时,$f[i][j]=max(0,(f[i-1][j]+1)*\frac{i}{i+j}+(f[i][j-1]-1)*\frac{j}{i+j})$
problem3 link
设$B$为$outputValues$中的最大值。
当$inputValue \geq B*(B-1)$时,在将$inputValue$置换后的输出中一定有$B$。否则,将有大于等于$B$个小于等于$B-1$的数字。那么这大于等于$B$个数字中,一定有某些数字的和是$B$的倍数($x_{1},x_{1}+x_{2},,,,,x_{1}+x_{2}+..+x_{n}$中要么存在$B$倍数的数字,要么一定存在两个数字模$B$的值相等,它们的差就是$B$的倍数)。这时将其拿掉换成都是$B$得到的数字个数更小。
这样的话,只需要解决小于$B*(B-1)$的部分(大于等于$B*(B-1)$的部分都可以直接换成若干$B$)。这里可以使用动态规划。记录置换$i$需要的最少数量以及在这种置换中用到的最大的是$outputValues$中哪一种。
这里需要解决的是,当$i$是$outputValues$中的某个数字时,一定要将$i$替换成至少两个数字之和。可以令$bestPay[i]$表示将$i$置换所需要的最小的个数(可以是一个数字),$bestChange[i]$表示将$i$置换所需要的最小的个数(至少两个数字),而$bestPayCoin[i],bestChangeCoin[i]$分别表示两种情况下最大的是$outputValues$中哪一个。
有了这些,可以推导出小于$B*(B-1)$的$inputValue$被置换成了:
$t_{1}=bestChangeCoin[inputValue]$
$t_{2}=bestPayCoin[inputValue-t_{1}]$
$t3=bestPayCoin[inputValue-t_{1}-t_{2}]$
$...$
最后是对于最终答案的计算。可以从大到小依次置换每一种$outputValues$。
code for problem1
import java.util.*;
import java.math.*;
import static java.lang.Math.*; public class SolitaireSimulation { public int periodLength(int[] heaps) { List<Integer> list=new ArrayList<>();
for(int x:heaps) {
list.add(x);
}
List<Integer> list1=next(list);
while(!list.equals(list1)) {
list=next(list);
list1=next(next(list1));
}
int step=1;
list=next(list);
while(!list.equals(list1)){
++step;
list=next(list);
}
return step;
} List<Integer> next(List<Integer> list) {
List<Integer> list1=new ArrayList<>();
for(int i=0;i<list.size();++i) {
if(list.get(i)>1) {
list1.add(list.get(i)-1);
}
}
list1.add(list.size());
Collections.sort(list1);
return list1;
}
}
code for problem2
import java.util.*;
import java.math.*;
import static java.lang.Math.*; public class RedIsGood { public double getProfit(int R, int B) { double[][] f=new double[2][B+1];
for(int i=0;i<=B;++i) {
f[0][i]=0;
} int pre=0,cur=1; for(int i=1;i<=R;++i) {
for(int j=0;j<=B;++j) { if(j==0) {
f[cur][j]=i;
continue;
} double p=1.0*i/(i+j);
f[cur][j]=p*(f[pre][j]+1)+(1-p)*(f[cur][j-1]-1);
if(f[cur][j]<0) {
f[cur][j]=0;
}
}
pre^=1;
cur^=1;
}
return f[pre][B];
}
}
code for problem3
import java.util.*;
import java.math.*;
import static java.lang.Math.*; public class ChangeOMatic { public long howManyRounds(int[] outputValues,long inputValue) { if(outputValues.length==1) {
return 1;
} final int N=outputValues.length;
final int B=outputValues[N-1];
final int MAX=B*B+B+47;
int[] bestPay=new int[MAX];
int[] bestPayCoin=new int[MAX];
int[] bestChange=new int[MAX];
int[] bestChangeCoin=new int[MAX];
for(int i=0;i<MAX;++i) {
bestPay[i]=bestChange[i]=i;
}
for(int c=1;c<N;++c) {
for(int i=outputValues[c];i<MAX;++i) {
if(bestPay[i]>=bestPay[i-outputValues[c]]+1) {
bestPay[i]=bestPay[i-outputValues[c]]+1;
bestPayCoin[i]=c;
}
}
for(int i=outputValues[c]+1;i<MAX;++i) {
if(bestChange[i]>=bestPay[i-outputValues[c]]+1) {
bestChange[i]=bestPay[i-outputValues[c]]+1;
bestChangeCoin[i]=c;
}
}
} long[] coinCounts=new long[N]; if(inputValue>=MAX) {
coinCounts[N-1]=(inputValue-(MAX-1))/B;
inputValue-=coinCounts[N-1]*B;
if(inputValue>=MAX) {
inputValue-=B;
++coinCounts[N-1];
}
while(inputValue>0) {
++coinCounts[bestPayCoin[(int)inputValue]];
inputValue-=outputValues[bestPayCoin[(int)inputValue]];
}
}
else {
++coinCounts[bestChangeCoin[(int)inputValue]];
inputValue-=outputValues[bestChangeCoin[(int)inputValue]];
while(inputValue>0) {
++coinCounts[bestPayCoin[(int)inputValue]];
inputValue-=outputValues[bestPayCoin[(int)inputValue]];
}
} long result=1;
for(int q=N-1;q>0;--q) {
result+=coinCounts[q];
int remains=outputValues[q];
coinCounts[bestChangeCoin[remains]]+=coinCounts[q];
remains-=outputValues[ bestChangeCoin[remains ]];
while(remains>0) {
coinCounts[bestPayCoin[remains]]+=coinCounts[q];
remains-=outputValues[bestPayCoin[remains]];
}
}
return result;
}
}
topcoder srm 420 div1的更多相关文章
- Topcoder SRM 643 Div1 250<peter_pan>
Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...
- Topcoder Srm 726 Div1 Hard
Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...
- topcoder srm 714 div1
problem1 link 倒着想.每次添加一个右括号再添加一个左括号,直到还原.那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号. problem2 link 令$h(x) ...
- topcoder srm 738 div1 FindThePerfectTriangle(枚举)
Problem Statement You are given the ints perimeter and area. Your task is to find a triangle wi ...
- Topcoder SRM 602 div1题解
打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...
- Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串
Problem Statement The Happy Letter game is played as follows: At the beginning, several players ...
- Topcoder SRM 584 DIV1 600
思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...
- TopCoder SRM 605 DIV1
604的题解还没有写出来呢.先上605的. 代码去practice房间找. 说思路. A: 贪心,对于每个类型的正值求和,如果没有正值就取最大值,按着求出的值排序,枚举选多少个类型. B: 很明显是d ...
- topcoder srm 575 div1
problem1 link 如果$k$是先手必胜那么$f(k)=1$否则$f(k)=0$ 通过对前面小的数字的计算可以发现:(1)$f(2k+1)=0$,(2)$f(2^{2k+1})=0$,(3)其 ...
随机推荐
- OBV15 案例2
BV
- MyBatis基础入门《五》核心配置文件
MyBatis基础入门<五>核心配置文件 描述: 在前面的章节中,简单的学习使用了一下mybatis,对于配置文件没有过多详细说明. 这里先描述项目中的一个核心配置文件:mybatis-c ...
- Bootstrap-全局样式的文本颜色和背景颜色
.text-五种颜色 文本颜色.text-info文本浅蓝颜色-提示.text-warning文本黄色-警告颜色.text-success文本绿色-成功颜色.text-primary文本深蓝色-警 ...
- 在caffe-ssd安装编译环境运行make all时候报错:Makefile:572: recipe for target '.build_release/src/caffe/util/hdf5.o' failed make: *** [.build_release/src/caffe/util/hdf5.o] Error 1
解决办法: 修改:Makefile.config INCLUDE_DIRS /usr/include/hdf5/serial/ 修改:Makefile LIBRARIES hdf5_hl and hd ...
- django 静态css js文件配置
参考:http://blog.csdn.net/liqiancao/article/details/66151287
- 超简单系列:ubuntu 13.04 安装 apache2.2+mod_wsgi+Django
1,Ubuntu更新系统 sudo apt-get update sudo apt-get upgrade 2,安装apache,mod_wsgi,Django sudo apt-get instal ...
- VMWare虚拟机 window文件传递
无论是将虚拟机的文件传到window上或者是将window上文件传到虚拟机上: 都可以选中文件,然后拖动文件到另一个系统上 提前:虚拟机安装了VMWARE Tools 1)window上文件拖到虚拟机 ...
- sitecore系统教程之内容创作入门
在Sitecore中,有两种编辑工具,您可以在其中创建和编辑网站上的内容: 内容编辑器 - 专为熟悉Sitecore及其包含的功能的经验丰富的内容作者而设计的应用程序. 体验编辑器 - 一种直观的编辑 ...
- 【转】python3实现自动化框架robotframework
由于python2只更新到2020年,python3是未来的主流,为了适应技术的变化python3实现robotframework是迟早的事 1.下载最新版本的python3.7,可根据自己电脑的位数 ...
- EasyUI表格DataGrid前端分页和后端分页的总结
Demo简介 Demo使用Java.Servlet为后台代码(数据库已添加数据),前端使用EasyUI框架,后台直接返回JSON数据给页面 1.配置Web.xml文件 <?xml version ...