CF1131D tarjan,拓扑
题目链接
541div2
http://codeforces.com/contest/1131/problem/D
思路
给出n序列和m序列的相对大小关系
构造出最大值最小的序列
缩点+拓扑
小的向大的连边
相等的连个环
tarjan缩点,判断环内是否ok
最后拓扑
更新要这样
ans[v]=max(ans[v],ans[u]+1);
就是说取最后更新的一个,保证大小关系
代码
#include <bits/stdc++.h>
#define ll long long
#define iter vector<int>::iterator
using namespace std;
const int N=2007;
int read() {
int x=0,f=1;char s=getchar();
for(;s>'9'||s<'0';s=getchar()) if(s=='-') f=-1;
for(;s>='0'&&s<='9';s=getchar()) x=x*10+s-'0';
return x*f;
}
int M[N][N];
int n,m;
struct node {
int v,nxt;
}e[N*N];
int head[N*N],tot;
void add(int u,int v) {
// cout<<u<<" "<<v<<"\n";
e[++tot].v=v;
e[tot].nxt=head[u];
head[u]=tot;
}
vector<int> G[N],col[N];
char s[N];
int dfn[N],low[N],stak[N],top,vis[N],cnt,js,belong[N],rt[N];
int ans[N],ru[N];
void tarjan(int u) {
dfn[u]=low[u]=++cnt;
vis[u]=1;
stak[++top]=u;
for(iter v=G[u].begin();v!=G[u].end();++v) {
if(!dfn[*v]) {
tarjan(*v);
dfn[u]=min(dfn[u],dfn[*v]);
} else
if(vis[*v])
dfn[u]=min(dfn[u],low[*v]);
}
if(low[u]==dfn[u]) {
++js;
while(stak[top]!=u) {
vis[stak[top]]=0;
col[js].push_back(stak[top]);
belong[stak[top]]=js;
top--;
}
top--;
belong[u]=js;
vis[u]=0;
col[js].push_back(u);
}
}
queue<int> q;
int main() {
n=read(),m=read();
for(int i=1;i<=n;++i) {
scanf("%s",s+1);
for(int j=1;j<=m;++j) {
if(s[j]=='>') {
M[j+n][i]=1;
M[i][j+n]=-1;
G[j+n].push_back(i);
// cout<<j+n<<" "<<i<<"\n";
}
if(s[j]=='<') {
M[i][j+n]=1;
M[j+n][i]=-1;
G[i].push_back(j+n);
// cout<<i<<" "<<j+n<<"\n";
}
if(s[j]=='=') {
G[j+n].push_back(i);
G[i].push_back(j+n);
// cout<<j+n<<" "<<i<<"\n";cout<<i<<" "<<j+n<<"?\n";
}
}
}
// for(int i=1;i<=n+m;++i) {
// for(int j=1;j<=n+m;++j) {
// cout<<M[i][j]<<" ";
// }
// puts("");
// }
for(int i=1;i<=m+n;++i)
if(!dfn[i])
tarjan(i);
for(int i=1;i<=js;++i) {
// cout<<col[i].size()<<"!\n";
for(iter a=col[i].begin();a!=col[i].end();++a) {
for(iter b=col[i].begin();b!=col[i].end();++b) {
// cout<<*a<<" "<<*b<<" ?\n";
if(M[*a][*b]!=0) {
// cout<<*a<<" "<<*b<<"\n";
cout<<"No";
return 0;
}
}
// cout<<*a<<" ";
}
// puts("");
}
// return 0;
for(int i=1;i<=n+m;++i) {
for(int j=1;j<=n+m;++j) {
if(M[i][j]==1)
if(belong[i]!=belong[j]) {
add(belong[i],belong[j]);
// cout<<belong[i]<<" "<<belong[j]<<"!!\n";
ru[belong[j]]++;
}
}
}
// memset(ans,0x3f,sizeof(ans));
for(int i=1;i<=js;++i) if(!ru[i]) q.push(i),ans[i]=1;
while(!q.empty()) {
int u=q.front();
q.pop();
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
ans[v]=max(ans[v],ans[u]+1);
ru[v]--;
if(!ru[v]) q.push(v);
}
}
// for(int i=1;i<=js;++i) cout<<ans[i]<<" ";cout<<"\n";return 0;
puts("Yes");
for(int i=1;i<=n;++i) printf("%d ",ans[belong[i]]);
puts("");
for(int i=1;i<=m;++i) printf("%d ",ans[belong[i+n]]);
return 0;
}
/*
3 3
<<<
<<=
<<=
*/
CF1131D tarjan,拓扑的更多相关文章
- 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp
题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...
- 【bzoj5017】[Snoi2017]炸弹 线段树优化建图+Tarjan+拓扑排序
题目描述 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足: Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被引爆. 现在 ...
- 【tarjan 拓扑排序 dp】bzoj1093: [ZJOI2007]最大半连通子图
思维难度不大,关键考代码实现能力.一些细节还是很妙的. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于 ...
- P3387缩点(tarjan+拓扑排序+线性dp)
题目描述 给定一个 n个点 m 条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次. 输入 ...
- [模板][Luogu3387] 缩点 - Tarjan, 拓扑+DP
Description 给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次 ...
- 洛谷P1073 Tarjan + 拓扑排序 // 构造分层图
https://www.luogu.org/problemnew/show/P1073 C国有 n n个大城市和 mm 条道路,每条道路连接这 nn个城市中的某两个城市.任意两个城市之间最多只有一条道 ...
- bzoj5017 炸弹 (线段树优化建图+tarjan+拓扑序dp)
直接建图边数太多,用线段树优化一下 然后缩点,记下来每个点里有多少个炸弹 然后按拓扑序反向dp一下就行了 #include<bits/stdc++.h> #define pa pair&l ...
- BZOJ.2208.[JSOI2010]连通数(bitset Tarjan 拓扑)
题目链接 先缩点,对于scc之间贡献即为szscc[i]*szscc[j] 用f[i][j]表示scci是否能到sccj 拓扑排序,每次把now的f或上to的f 用bitset优化 //63888kb ...
- bzoj 1093 最大半连通子图 - Tarjan - 拓扑排序 - 动态规划
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...
随机推荐
- OpenCV resources
http://blog.csdn.net/small_foxrabbit/article/details/39858149http://blog.csdn.net/wuyoy520/article/d ...
- django 网站的搭建(2)
这里使用nginx+uwsgi的方法来搭建生产环境 1,pip3.5 install uwsgi 下载uwsgi ,这里就不做测试了,一般不会出错 2,将django与uwsgi连接在一起 毕竟ru ...
- Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)
http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Conv ...
- uvalive 4848 Tour Belt
题意: 一个KTO被定义为一个特殊的连通块,这个连通块满足一个要求,这个连通块中的最短的边大于 与这个连通相连的不属于这个连通块的边中的最大值. 给出一个图,统计KTO里面的点有多少个.(一个点可以属 ...
- MQ(转)
1. 到底什么时候该使用MQ? 1). 典型场景一:数据驱动的任务依赖 采用MQ的优点是: a. 不需要预留buffer,上游任务执行完,下游任务总会在第一时间被执行 b. 依赖多个任务,被多个任务依 ...
- 面试题-JAVA算法题
1.编写一个程序,输入n,求n!(用递归的方式实现). public static long fac(int n){ if(n<=0) return 0; else if(n==1) retur ...
- [转载]C#堆栈讲解
1:栈就是堆栈,因为堆和堆栈这样说太拗口了,搞得像绕口令,所以有些时候就把堆栈简称为栈.堆和栈,你看这又多舒服.但无论什么时候,堆栈都不等于堆和栈,必须说,堆和栈或者堆和堆栈. 2:值类型变量和引用类 ...
- 前端框架VUE----webpack打包工具的使用
在这里我仅仅的是对webpack做个讲解,webpack这个工具非常强大,解决了我们前端很繁琐的一些工具流程繁琐的事情.如果感兴趣的同学,还是看官网吧. 中文链接地址:https://www.webp ...
- 前端框架VUE----面向对象
JavaScript 语言中,生成实例对象的传统方法是通过构造函数. function Animal(name,age){ this.name = name; this.age = age; } An ...
- eclipse的svn插件添加代理访问svn
1.首先找到插件配置文件 C:\Users\Administrator\AppData\Roaming\Subversion这个目录下的servers文件 打开找到 # http-proxy-host ...