转自:https://blog.minio.io/stream-processing-with-apache-flink-and-minio-10da85590787

Modern technology trends like Machine Learning, Deep Learning, Artificial intelligence, and IoT have pushed the need for a reliable, scaleable storage platform that is versatile enough to cater to the high volume data streams that these applications generate.

In this post, we’ll see an introduction to Apache Flink, one of the most popular stream processing engines today and try to understand its value that makes it widely adopted by Enterprises across the world. Later we’ll also explore how Minio works with Flink to build a private cloud data pipeline for a variety of use cases.

What is Stream processing?

Stream processing enables analyzing continuous data streams. In this approach, data is seen as a continuous stream that processing engines ingest, analyze and return the response within a small time frame — few milliseconds to minutes.

The response time is generally based on the use-case and criticality of response time. For example, you’d expect IoT sensor data from a nuclear reactor to be processed in a much smaller time frame as compared to data from a user’s website visit.

There are several situations where the streaming approach to data analysis is better suited when compared to the batch analysis:

  • With modern technologies (IoT, transaction logs, application logs, activity logs, visit logs) generating continuous data streams, processing that data in a similar, continuous manner is the natural approach.
  • Batch processing takes a bigger chunk of data and processes them at once while stream processing takes data as they come in, hence spreading the processing over time. This allows stream processing work with fewercompute resources compared to batch processing.
  • Sometimes data is too huge and it is not economically sensible to store it all. Stream processing let you handle large fire-hose style data and retainonly useful bits.
  • Streaming allows detecting patterns, inspect results, and also easily look at data from multiple streams simultaneously. This means you get approximate results in a shorter time frame. In contrast, with batch processing, you need to process multiple batches and aggregate results across these batches to get better results, but it takes longer.

Stream processing use-cases

As we discussed, stream processing is beneficial in situations where quick, (sometimes approximate) answer is best suited, while processing data. Let us now take a look at common real world applications of stream processing approach:

Anomaly detection: Streaming analysis can be applied to continuous streams of data and detect anomalies in near real time. For example, in a stream of financial transaction data, fraudulent transactions can be thought of as anomalies — stream processing can detect these, protecting banks and customers from financial damage.

Business process monitoring: A business process involves several events within a specific domain for example in an e-commerce business all the events starting CHECK_OUT_FROM_CART to ITEM_RECEIVED_BY_CUSTOMER may be thought of as one business process — a critical one at that. Stream processing can be used to monitor such processes for anomalies like not completing within a time frame, items mishandled by delivery partners etc.

Rule based alerting: Stream processing can be used to trigger alerts based on certain rules. This means as soon as a certain criteria is met, alerts can be sent out to different targets.

Read more about stream processing use cases on Apache Flink website.


Apache Flink

Apache Flink is a distributed processing engine for stateful computations over data streams. Flink excels at processing unbounded and bounded data sets.

Flink has been designed to run in all common cluster environments, perform computations at in-memory speed and at any scale.

While Apache Spark is well know to provide Stream processing support as one of its features, stream processing is an after thought in Spark and under the hoods Spark is known to use mini-batches to emulate stream processing.

Apache Flink on the other hand has been designed ground up as a stream processing engine. This means Flink

  • Does better memory management and avoids occasional spikes in memory usage.
  • Manages faster speeds by allowing iterative processing to take place on the same node rather than having the cluster run them independently.

Minio with Apache Flink

Apache Flink supports three different data targets in its typical processing flow — data source, sink and checkpoint target. While data source and sink are fairly obvious, checkpoint target is used to persist states at certain intervals, during processing, to guard against data loss and recover consistently from a failure of nodes.

With AWS S3 API support a first class citizen in Apache Flink, all the three data targets can be configured to work with any AWS S3 API compatible object store, including ofcourse, Minio.

Minio can be configured with Flink in four broad ways, let’s take a look at all four below:

  1. Minio event notifications: Minio event logs can be sent to Flink via Kafka as event streams. Such event data is beneficial in cases where object access logs are important for business to understand certain user behaviour trends or data access trends.
 

2. Minio object data: Minio S3 SELECT command response is streaming data, this data can be directly fed to Flink for further analysis and processing.

 

3. Minio as the checkpoint for Flink: Flink supports checkpointing to ensure it can recover node failures and start from right where it left off. Flink can be configured to store these Checkpoints on Minio server.

 

4. Minio as the sink for Flink: As Flink can output data to S3 targets, Minio can be used the sink for processing data output from Flink.

 

Why is it a good idea to use Minio with Flink:

  • Remote object storage target like Minio de-couples state from Flink’s compute nodes. This means Flink becomes stateless i.e. free to grow and shrink as and when needed (saving cost) while state is safely stored on Minio.
  • Minio performance (upto 10 GBps per node) ensures that even if the state is de-coupled, it is readily available and adds no latency to Flink processing.
  • With configurable erasure coding, scaleable design, server side encryption, Minio ensures safe, scaleable and reliable storage of data in cost efficient manner.
  • Native AWS S3 API support in Flink means out of the box integration and support for Minio, reducing configuration and maintenance costs.

Configure Minio with Flink

Let us now take a look at how to configure Apache Flink with Minio as the remote storage backend. In this example, we’ll use Minio as both the source and sink.

To start with, you’ll need Minio server deployed, refer this document for details. Next, download Flink binary as explained in the quick start document.

Then update $FLINK_DIR/conf/flink-conf.yaml and add the below sections:

state.backend: filesystem
s3.endpoint: http://127.0.0.1:9000
s3.path-style: true
s3.access-key: minio
s3.secret-key: minio123

$FLINK_DIR here is the directory where you untarred Flink tar file. Also, don’t forget to update the s3. fields based on actuals from your Minio server deployment.

Now, start Flink. The setup is now ready to use Minio as the default storage system. To test this I used the WordCount example from Flink documentation

./bin/flink run examples/batch/WordCount.jar — input s3://input/test.txt — output s3://testbucket/output

Here test.txt is a sample text file (use any file with lots of text data). Once the job finishes, you can see the word count in the testbucket/output file.

Conclusion

In this post we learnt about Stream processing and how it has the potential to help enterprises speed up their data processing approach. We learnt why Stream processing is gaining popularity and saw some of the popular use cases. Finally we understood how Minio combined with Flink can help create a private cloud based streaming data infrastructure.

As Streaming data becomes one of the most popular ways to consume and process events, we hope this post helped you understand how Flink is well suited to handle such approach and why it makes sense to use Minio as the storage engine for such streaming data infrastructure.

 
 
 
 

Stream processing with Apache Flink and Minio的更多相关文章

  1. An Overview of End-to-End Exactly-Once Processing in Apache Flink (with Apache Kafka, too!)

    01 Mar 2018 Piotr Nowojski (@PiotrNowojski) & Mike Winters (@wints) This post is an adaptation o ...

  2. Apache Samza - Reliable Stream Processing atop Apache Kafka and Hadoop YARN

    http://engineering.linkedin.com/data-streams/apache-samza-linkedins-real-time-stream-processing-fram ...

  3. Flink监控:Monitoring Apache Flink Applications

    This post originally appeared on the Apache Flink blog. It was reproduced here under the Apache Lice ...

  4. Apache Flink 1.5.0 Release Announcement

    Apache Flink: Apache Flink 1.5.0 Release Announcement https://flink.apache.org/news/2018/05/25/relea ...

  5. 园子的推广博文:欢迎收看 Apache Flink 技术峰会 FFA 2021 的视频回放

    园子专属收看链接:https://developer.aliyun.com/special/ffa2021/live#?utm_content=g_1000316459 Flink Forward 是 ...

  6. Peeking into Apache Flink's Engine Room

    http://flink.apache.org/news/2015/03/13/peeking-into-Apache-Flinks-Engine-Room.html   Join Processin ...

  7. 13 Stream Processing Patterns for building Streaming and Realtime Applications

    原文:https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/ Introduction ...

  8. How Cigna Tuned Its Spark Streaming App for Real-time Processing with Apache Kafka

    Explore the configuration changes that Cigna’s Big Data Analytics team has made to optimize the perf ...

  9. 腾讯大数据平台Oceanus: A one-stop platform for real time stream processing powered by Apache Flink

    January 25, 2019Use Cases, Apache Flink The Big Data Team at Tencent     In recent years, the increa ...

随机推荐

  1. 谈谈你对Java多线程的理解以及多线程的实现方式

    说线程之前先说进程,何为进程?进程就是正在进行中的程序.比如电脑同时在运行QQ进程.cmd进程.wps进程.飞秋进程等.在某一时刻,CPU只能执行一个程序,只是在做快速切换,我们肉眼看不出来. 比如: ...

  2. 查看文件 ls -lh

    查看文件 ll ls -l --block-size=k ls -lh

  3. SpringMVC配置及使用

    SpringMVC基本配置 SpringMVC是基本请求响应模式的框架. 在项目中集成SpringMVC框架首先需要导入相关的jar包,所需包具体如下: commons-dbcp.jar common ...

  4. poj3279(dfs+二进制枚举思路)

    题意转载自https://www.cnblogs.com/blumia/p/poj3279.html 题目属性:DFS 相关题目:poj3276 题目原文:[desc]Farmer John know ...

  5. 基于spec互评Alpha版本

    作业要求[https://edu.cnblogs.com/campus/nenu/2018fall/homework/2323] 队名:二次元梦之队 组长:刘莹莹 组员:周昊 潘世维  王玉潘 赵美增 ...

  6. day 68 增删改查 语法

    1 普通正则 2 分组正则 url(r'/blog/(\d+)/(\d+)',views.blog)     blog(request,arq1,arq2) 按照位置传参 3 分组命名 url(r'/ ...

  7. ESP8266 问题

    根据SDK接口编写的程序在运行一段时间,大约15/18分钟左右,就会报错 [22:30:55.828] there is no poison after the block. Expected poi ...

  8. golang---map类型

    map 类似其它语言中的哈希表或字典,以key-value形式存储数据 key必须是支持==或!=比较运算的类型,不可以是函数.map或slice Map查找比线性搜索快很多,但比使用索引访问数据的类 ...

  9. REST easy with kbmMW #21 – Delphi client stubs

    在之前的博文中,我提到新的存根生成器框架具有生成Delphi客户端存根所需的功能,使得开发Delphi智能客户端非常容易,完全支持编译时的类型检查和IDE类/属性帮助. 我没想到会把它包含在即将发布的 ...

  10. meson 中调用shell script

    meson 中有时需要调用其他脚本语言,加之对meson build system接口和原理不熟悉,无奈只有静心学习meson 官方文档,终于皇天不负有心人让我找到了: run_command() 只 ...