Marriage Match III

Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 1581    Accepted Submission(s): 464

Problem Description
Presumably, you all have known the question of stable marriage match. A girl will choose a boy; it is similar as the ever game of play-house . What a happy time as so many friends play together. And it is normal that a fight or a
quarrel breaks out, but we will still play together after that, because we are kids.




Now, there are 2n kids, n boys numbered from 1 to n, and n girls numbered from 1 to n. As you know, ladies first. So, every girl can choose a boy first, with whom she has not quarreled, to make up a family. Besides, the girl X can also choose boy Z to be her
boyfriend when her friend, girl Y has not quarreled with him. Furthermore, the friendship is mutual, which means a and c are friends provided that a and b are friends and b and c are friend.




Once every girl finds their boyfriends they will start a new round of this game—marriage match. At the end of each round, every girl will start to find a new boyfriend, who she has not chosen before. So the game goes on and on. On the other hand, in order to
play more times of marriage match, every girl can accept any K boys. If a girl chooses a boy, the boy must accept her unconditionally whether they had quarreled before or not.




Now, here is the question for you, how many rounds can these 2n kids totally play this game?
 
Input
There are several test cases. First is an integer T, means the number of test cases.


Each test case starts with three integer n, m, K and f in a line (3<=n<=250, 0<m<n*n, 0<=f<n). n means there are 2*n children, n girls(number from 1 to n) and n boys(number from 1 to n).

Then m lines follow. Each line contains two numbers a and b, means girl a and boy b had never quarreled with each other.


Then f lines follow. Each line contains two numbers c and d, means girl c and girl d are good friends.
 
Output
For each case, output a number in one line. The maximal number of Marriage Match the children can play.
 
Sample Input
1
4 5 1 2
1 1
2 3
3 2
4 2
4 4
1 4
2 3
 
Sample Output
3
 
Author
starvae
 
Source
题意:共同拥有2*n个人。一半女一半男,女与男有m个关系。表示能够成为一对,接下来 f 对女的与女的  的朋友关系,假设a与b是朋友。那么表示a女与b女的相连男性也能够成为一对,相同b也与a的相连男性可成为一对,女的之间的朋友关系能够传递。且每一个女性能够再随意选择K人。

一组配对情况为全部的女性都有一个与之配对的男性(一对一的关系)。假设还有其它组配对情况,那么全部的女性配对不能够再与原来的男性配成对。问最多有多少组配对情况。


 这题和HDU3081 非常类似。



可是由于能够任意选择K个人。



所以要将女孩拆成两个点。



将每一个女孩u分为u1,u2。若u喜欢v则加一条u1到v的边 否则加一条u2到v的边。令加u1到u2的容量为k的边;



这个拆点的想法很巧妙。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define captype int const int MAXN = 100010; //点的总数
const int MAXM = 4000100; //边的总数
const int INF = 1<<30;
struct EDG{
int to,next;
captype cap,flow;
}edg[MAXM];
int eid,head[MAXN];
int gap[MAXN];
int dis[MAXN];
int cur[MAXN];
int pre[MAXN]; void init(){
eid=0;
memset(head,-1,sizeof(head));
}
void addEdg(int u,int v,captype c,captype rc=0){
edg[eid].to=v; edg[eid].next=head[u];
edg[eid].cap=c; edg[eid].flow=0; head[u]=eid++; edg[eid].to=u; edg[eid].next=head[v];
edg[eid].cap=rc; edg[eid].flow=0; head[v]=eid++;
}
captype maxFlow_sap(int s,int t,int n){
memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[s]=-1;
gap[0]=n; captype ans=0;
int u=s;
while(dis[s]<n){
if(u==t){
captype mint=INF;
int id;
for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to])
if(mint>edg[i].cap-edg[i].flow){
mint=edg[i].cap-edg[i].flow;
id=i;
}
for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]){
edg[i].flow+=mint;
edg[i^1].flow-=mint;
}
ans+=mint;
u=edg[id^1].to;
continue;
}
bool flag=0;
for(int i=cur[u]; i!=-1; i=edg[i].next)
if(edg[i].cap>edg[i].flow&&dis[u]==dis[edg[i].to]+1){
cur[u]=pre[edg[i].to]=i;
flag=true;
break;
}
if(flag){
u=edg[cur[u]].to;
continue;
}
int minh=n;
for(int i=head[u]; i!=-1; i=edg[i].next)
if(edg[i].cap>edg[i].flow && minh>dis[edg[i].to]){
cur[u]=i; minh=dis[edg[i].to];
}
gap[dis[u]]--;
if(!gap[dis[u]]) return ans;
dis[u]=minh+1;
gap[dis[u]]++;
if(u!=s)
u=edg[pre[u]^1].to;
}
return ans;
} int fath[MAXN];
int findroot(int x){
if(x!=fath[x])
fath[x]=findroot(fath[x]);
return fath[x];
}
void setroot(int x,int y){
x=findroot(x);
y=findroot(y);
fath[x]=y;
}
void rebuildMap(int mapt[255][255],int n){//处理朋友之间的关系
int mp[255][255]={0};
for(int i=1; i<=n; i++)
fath[i]=findroot(i);
for(int i=1; i<=n; i++){
int j=fath[i];
for(int e=1; e<=n; e++)
mp[j][e]|=mapt[i][e];
}
for(int i=1; i<=n; i++){
int j=fath[i];
for(int e=1; e<=n; e++)
mapt[i][e]=mp[j][e];
}
}
int main()
{
int T,n,m,k,f,mapt[255][255];
int u,v;
scanf("%d",&T);
while(T--){
scanf("%d%d%d%d",&n,&m,&k,&f); init();
memset(mapt,0,sizeof(mapt));
for(int i=1; i<=n; i++)
fath[i]=i; while(m--){
scanf("%d%d",&u,&v);
mapt[u][v]=1;
}
while(f--){
scanf("%d%d",&u,&v);
setroot(u,v);
}
rebuildMap(mapt,n); int s=0, t=3*n+1;
for(int i=1; i<=n; i++){
addEdg(s,i,0);
addEdg(i,i+n,k);
for(int j=1; j<=n; j++)
if(mapt[i][j])
addEdg(i,j+2*n,1);
else
addEdg(i+n,j+2*n,1); addEdg(i+2*n,t,0);
} int ans=0 , l=0 , r=n ,mid;
while(l<=r){
mid=(l+r)>>1; for(int i=0; i<eid; i++)
edg[i].flow=0;
for(int i=head[s]; i!=-1; i=edg[i].next)
edg[i].cap=mid;
for(int i=head[t]; i!=-1; i=edg[i].next)
edg[i^1].cap=mid; if(n*mid==maxFlow_sap(s,t,t+1))
ans=mid,l=mid+1;
else
r=mid-1;
} printf("%d\n",ans);
}
}

HDU 3277 Marriage Match III(并查集+二分答案+最大流SAP)拆点,经典的更多相关文章

  1. HDU 3277 Marriage Match III(二分+最大流)

    HDU 3277 Marriage Match III 题目链接 题意:n个女孩n个男孩,每一个女孩能够和一些男孩配对,此外还能够和k个随意的男孩配对.然后有些女孩是朋友,满足这个朋友圈里面的人.假设 ...

  2. HDU 3277 Marriage Match III

    Marriage Match III Time Limit: 4000ms Memory Limit: 32768KB This problem will be judged on HDU. Orig ...

  3. Marriage Match II 【HDU - 3081】【并查集+二分答案+最大流】

    题目链接 一开始是想不断的把边插进去,然后再去考虑我们每次都加进去边权为1的边,直到跑到第几次就没法继续跑下去的这样的思路,果不其然的T了. 然后,就是想办法咯,就想到了二分答案. 首先,我们一开始处 ...

  4. HDU 3416 Marriage Match IV (最短路径,网络流,最大流)

    HDU 3416 Marriage Match IV (最短路径,网络流,最大流) Description Do not sincere non-interference. Like that sho ...

  5. hdu 4750 Count The Pairs(并查集+二分)

    Problem Description With the 60th anniversary celebration of Nanjing University of Science and Techn ...

  6. 【HDOJ】3277 Marriage Match III

    Dinic不同实现的效率果然不同啊. /* 3277 */ #include <iostream> #include <string> #include <map> ...

  7. HDU 3081 Marriage Match II (网络流,最大流,二分,并查集)

    HDU 3081 Marriage Match II (网络流,最大流,二分,并查集) Description Presumably, you all have known the question ...

  8. HDU 3081 Marriage Match II (二分图,并查集)

    HDU 3081 Marriage Match II (二分图,并查集) Description Presumably, you all have known the question of stab ...

  9. HDU 3081 Marriage Match II(二分法+最大流量)

    HDU 3081 Marriage Match II pid=3081" target="_blank" style="">题目链接 题意:n个 ...

随机推荐

  1. vtiger7安装设置

    安装界面一直报错 其实是设置的问题 error_reporting:E_WARNING & ~E_NOTICE & ~E_DEPRECATED max_execution_time:6 ...

  2. C# 收发和处理自定义的WINDOWS消息

    C# 发送.接收和处理自定义的WINDOWS消息 转载地址:http://blog.chinaunix.net/uid-24427209-id-2608350.html 为了程序启动后自动执行主函数, ...

  3. BZOJ1084 [SCOI2005]最大子矩阵 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1084 题意概括 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注 ...

  4. BZOJ1040 [ZJOI2008]骑士 基环树林(环套树) 树形动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题意概括 有n个人,每一个人有一个最恨的人. 并且,每一个人有一个权值. 一个人不可以和他最恨的人同时被选中. 现在请你求出在 ...

  5. DP-hdu1260

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1260 题目描述: 题目大意:每一个人去电影票买票,有两种买票方法:1.自己单人买:2.与前面的人一起买 ...

  6. dp的最优性

    dp看似像递推,但是有一点不一样,虽然都是先处理完子过程并由此退出最终的,但是dp满足任何过程的最优性,dp用子过程最优来保证最终结果的最优性.

  7. js数据结构之hash散列的详细实现方法

    hash散列中需要确定key和value的唯一确定关系. hash散列便于快速的插入删除和修改,不便于查找最大值等其他操作 以下为字符和数字的hash散列: function HashTable () ...

  8. 探究functools模块wraps装饰器的用途

    <A Byte of Python>17.8节讲decorator的时候,用到了functools模块中的一个装饰器:wraps.因为之前没有接触过这个装饰器,所以特地研究了一下. 何谓“ ...

  9. 2005 ACM 第几天 闰年

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=2005 注意:闰年 查表法 #include<stdio.h> int main() { int ...

  10. Dll注入经典方法完整版

    总结一下基本的注入过程,分注入和卸载 注入Dll: 1,OpenProcess获得要注入进程的句柄 2,VirtualAllocEx在远程进程中开辟出一段内存,长度为strlen(dllname)+1 ...