Elasticsearch Internals: Networking Introduction An Overview of the Network Topology
This article introduces the networking part of Elasticsearch. We look at the network topology of an Elasticsearch cluster, which connections are established between which nodes and how the different Java clients works. Finally, we look a bit closer on the communication channels between two nodes.
Node Topology
Elasticsearch nodes in a cluster form what is known as a full mesh topology, which means that each Elasticsearch node maintains a connection to each of the other nodes.
Full mesh topology with 6 cluster nodes
In order to simplify the code base, the connections are used as one-way connections, so the connection topology actually ends up looking like this:
Adding a Node
When a node starts up, it reads a list of seed nodes from its configuration using unicast, and sends multicastmessages looking for other nodes in the same cluster.
As the node discovers more instances in the same cluster, it connects to them one by one, asks them for information about all the nodes they know and then attempts to connect to them all and officially join the cluster. In this way, previously running instances assist in quickly getting fresh instances up to speed on the current nodes in a cluster.
Node Clients
Even “client” Elasticsearch nodes (i.e nodes configured with node.client: true
or build with NodeBuilder.client(true)
) connect to the cluster this way.
This implies that the client node becomes a full participant in the full mesh network. In other words, once it starts joining the cluster, all the existing nodes in the cluster will connect back to the instance. This means that both the client and server firewalls and publish hosts must be properly configured in order to allow this. Additionally, whenever a node client joins, leaves or experiences networking issues, it causes extra work for all the other nodes in the cluster, such as opening / closing network connections and updating the cluster state with the information about the node.
Transport Clients
On the other hand, “transport” clients work differently.
When a Transport client connects to one or more instances in a cluster, the instances do not connect back, nor is the existence of the transport client part of the cluster state. This means that a joining / leaving transport client causes minimum extra work for the other nodes in the cluster.

Connections and Channels
What do we mean when we talk about the connection
to a Node in Elasticsearch? In the sections above, we refrained from being specific about it and only used the term as a logical connection that allows communication between two nodes. Let’s go into more detail.
Usually, when we talk about connections in the context of networks, we refer to TCP-connections, which provide a reliable line of communication between two nodes.
Elasticsearch uses (by default) TCP for communication between nodes, but in order to prevent important traffic such as fault-detection and cluster state changes from being affected by far less important, slower moving traffic such as query/indexing requests, it creates multiple TCP connections between each node. For each of these connections, Elasticsearch uses the term channel
, which encapsulates the serialization / deserialization of messages over a particular connection.
In earlier Elasticsearch versions there used to be three different classes of channels: low
, med
and high
. After a while, ping
was added, and a recent change renamed these channels such that they are more descriptive about their intention. At of the time of writing, the following channel classes exist:
recovery
: 2 channels for the recovery of indexesbulk
: 3 channels for low priority bulk based operations such as bulk indexing. Previously calledlow
.reg
: 6 channels for medium priority regular operations such as queries. Previous calledmed
.state
: 1 channel dedicated to state based operations such as changes to the cluster state. Previously calledhigh
.ping
: 1 channel dedicated to pings between the instances for fault detection.
The default number of channels in each of these class are configured with the configuration prefix of transport.connections_per_node
.

Elasticsearch has support for TCP keepalive which is not explicitly set by default. This prevents unused or idle channels from being closed, which would otherwise cascade into a complete disconnect-reconnect cycle as explained above.
Adding an Instance
A consequence of the above is that adding a new instance to an existing cluster causes it to establish 13 connections to each node, and each node establishes 13 connections back to the new instance.
Linked Channels
If one of the 13 channels to a particular node is closed due to intermittent network errors for example, all the other channels to the same node are closed and the connections to the node is reconnected. This is done in order to maintain some internal invariants and to ensure the internal consistency of the communication between the nodes.
Ending Remarks
The fact that all the channels between two nodes in a cluster are linked makes it extra vulnerable to network issues, and this is one of the reasons why people are discouraged from trying to create a cluster between data centers that are far apart (and thus adding more sources of failure).
In this article we’ve shown the basic network topology of an Elasticsearch cluster and introduced the concept of channels
that are used for communication between nodes. In a later article we’ll take a closer look at what goes on inside each of these channels.
Elasticsearch Internals: Networking Introduction An Overview of the Network Topology的更多相关文章
- 小样本学习最新综述 A Survey on Few-shot Learning | Introduction and Overview
目录 01 Introduction Bridging this gap between AI and humans is an important direction. FSL can also h ...
- [Machine Learning] Probabilistic Graphical Models:一、Introduction and Overview(1、Overview and Motivation)
一.PGM用来做什么 1. 医学诊断:从各种病症分析病人得了什么病,该用什么手段治疗 2. 图像分割:从一张百万像素级的图片中分析每个像素点对应的是什么东西 两个共同点:(1)有非常多不同的输入变 ...
- [Machine Learning] Probabilistic Graphical Models:一、Introduction and Overview(2、Factors)
一.什么是factors? 类似于function,将一个自变量空间投影到新空间.这个自变量空间叫做scope. 二.例子 如概率论中的联合分布,就是将不同变量值的组合映射到一个概率,概率和为1. 三 ...
- ElasticSearch 2 (11) - 节点调优(ElasticSearch性能)
ElasticSearch 2 (11) - 节点调优(ElasticSearch性能) 摘要 一个ElasticSearch集群需要多少个节点很难用一种明确的方式回答,但是,我们可以将问题细化成一下 ...
- OpenStack Networking overview
原文地址:http://docs.openstack.org/newton/install-guide-ubuntu/neutron-concepts.html Networking service ...
- Monitoring and Tuning the Linux Networking Stack: Receiving Data
http://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/ ...
- 微软职位内部推荐-Sr. SW Engineer for Azure Networking
微软近期Open的职位: Senior SW Engineer The world is moving to cloud computing. Microsoft is betting Windows ...
- Docker部署Elasticsearch集群
http://blog.sina.com.cn/s/blog_8ea8e9d50102wwik.html Docker部署Elasticsearch集群 参考文档: https://hub.docke ...
- Virtual Networking
How the virtual networks used by guests work Networking using libvirt is generally fairly simple, an ...
随机推荐
- CodeForces - 1099F:Cookies (线段树)
Mitya and Vasya are playing an interesting game. They have a rooted tree with n vertices, and the ve ...
- a标签总结
一.<a>定义和用法 <a> 标签定义超链接,用于从一张页面链接到另一张页面. <a> 元素最重要的属性是 href 属性,它指示链接的目标. 在所有浏览器中 ...
- PTA——数列求和
PTA 7-34 求分数序列前N项和 #include<stdio.h> int main() { int i,n; ,fm = ,sum = ; scanf("%d" ...
- django额外参数的传递和url命名
django额外参数的传递 path方法:path(route, view, kwargs=None, name=None) path方法可以传递入一个额外参数的字典参数(kwarg),字典里的值就会 ...
- C++ 作业 (循环链表构建队列)
/* author screen name Andromeda_Galaxy; chinese name 杨子俊 */ #include<bits/stdc++.h> using name ...
- 【mysql】创建索引
一.联合唯一索引 项目中需要用到联合唯一索引: 例如:有以下需求:每个人每一天只有可能产生一条记录:处了程序约定之外,数据库本身也可以设定: 例如:t_aa 表中有aa,bb两个字段,如果不希望有2条 ...
- sofa graphql 2 rest api 试用
大部分代码还是来自sofa 的官方文档,同时添加了docker && docker-compose集成 备注: 代码使用typescript 同时运行的时候为了方便直接运行使用ts ...
- Monte Carlo tree search 学习
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search 蒙特卡洛树搜索(MCTS)基础 http://mcts.ai/about/index.htm ...
- Spring事务管理机制的实现原理-动态代理
之前在做项目中遇到spring无法进行事务代理问题,最后发现是因为没有写接口,原因当时明白了,看到这篇文章写的清楚些,转过来 我们先来分析一下Spring事务管理机制的实现原理.由于Spring内置A ...
- 比较两个ranges(equal,mismatch,lexicographical_compare)
euqal 比较两个序列是否相等,相等返回true,不相等返回false //版本一:调用重载operator==比较元素 template <class InputIterator1,clas ...