【Hive学习之五】Hive 参数&动态分区&分桶
环境
  虚拟机:VMware 10 
  Linux版本:CentOS-6.5-x86_64 
  客户端:Xshell4
  FTP:Xftp4
  jdk8
  hadoop-3.1.1
  apache-hive-3.1.1
一、Hive 参数
1、Hive 参数类型
hive当中的参数、变量,都是以命名空间开头;

通过${}方式进行引用,其中system、env下的变量必须以前缀开头;
在Hive CLI查看参数
#显示所有参数
hive>set;
#查看单个参数
hive> set hive.cli.print.header;
hive.cli.print.header=false
2、Hive参数设置方式
(1)、修改配置文件 ${HIVE_HOME}/conf/hive-site.xml  这会使所有客户端都生效
(2)、启动hive cli时,通过--hiveconf key=value的方式进行设置  这只会在当前客户端生效
例:
[root@PCS102 ~]# hive --hiveconf hive.cli.print.header=true
hive> set hive.cli.print.header;
hive.cli.print.header=true
hive>
(3)、进入cli之后,通过使用set命令设置 这只会在当前客户端生效
hive> set hive.cli.print.header;
hive.cli.print.header=false
hive> select * from wc;
OK
hadoop
hbase
hello
name
world
zookeeper
Time taken: 2.289 seconds, Fetched: row(s)
hive> set hive.cli.print.header=true;
hive> set hive.cli.print.header;
hive.cli.print.header=true
hive> select * from wc;
OK
wc.word wc.totalword
hadoop
hbase
hello
name
world
zookeeper
Time taken: 2.309 seconds, Fetched: row(s)
hive>
(4)使用.hiverc文件设置
当前用户家目录(例:root用户:家目录是/root)下的.hiverc文件 
如果没有,可直接创建该文件,将需要设置的参数写到该文件中,hive启动运行时,会加载改文件中的配置。
[root@PCS102 ~]# vi ~/.hiverc
set hive.cli.print.header=true
:wq
[root@PCS102 ~]# ll -a|grep hive
-rw-r--r--. root root Feb : .hivehistory
-rw-r--r--. root root Feb : .hiverc
另外:
.hivehistory 文件记录hive历史操作命令集
#重新登录 可以发现配置生效了 影响当前linux用户登录的客户端
[root@PCS102 ~]# hive
hive> set hive.cli.print.header;
hive.cli.print.header=true
hive>
二、动态分区
参数设置:
开启支持动态分区
set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nostrict;
默认:strict(至少有一个分区列是静态分区)
其他参数
  set hive.exec.max.dynamic.partitions.pernode;
  每一个执行mr节点上,允许创建的动态分区的最大数量(100)
  set hive.exec.max.dynamic.partitions;
  所有执行mr节点上,允许创建的所有动态分区的最大数量(1000)
  set hive.exec.max.created.files;
  所有的mr job允许创建的文件的最大数量(100000)
数据 /root/data:
,小明1,,boy,lol-book-movie,beijing:shangxuetang-shanghai:pudong
,小明2,,man,lol-book-movie,beijing:shangxuetang-shanghai:pudong
,小明3,,boy,lol-book-movie,beijing:shangxuetang-shanghai:pudong
,小明4,,man,lol-book-movie,beijing:shangxuetang-shanghai:pudong
,小明5,,boy,lol-book-movie,beijing:shangxuetang-shanghai:pudong
,小明6,,man,lol-book-movie,beijing:shangxuetang-shanghai:pudong
1、原始表
hive> CREATE TABLE psn21( > id INT,
> name STRING,
> age INT,
> sex string,
> likes ARRAY<STRING>,
> address MAP<STRING,STRING>
> )
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY ','
> COLLECTION ITEMS TERMINATED BY '-'
> MAP KEYS TERMINATED BY ':'
> LINES TERMINATED BY '\n';
OK
Time taken: 0.183 seconds
hive> LOAD DATA LOCAL INPATH '/root/data' INTO TABLE psn21;
Loading data to table default.psn21
OK
Time taken: 0.248 seconds
hive> select * from psn21;
OK
psn21.id psn21.name psn21.age psn21.sex psn21.likes psn21.address
小明1 boy ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
小明2 man ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
小明3 boy ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
小明4 man ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
小明5 boy ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
小明6 man ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"}
Time taken: 0.113 seconds, Fetched: row(s)
hive>
2、分区表
hive> CREATE TABLE psn22(
> id INT,
> name STRING,
> likes ARRAY<STRING>,
> address MAP<STRING,STRING>
> )
> partitioned by (age int,sex string)
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY ','
> COLLECTION ITEMS TERMINATED BY '-'
> MAP KEYS TERMINATED BY ':'
> LINES TERMINATED BY '\n';
OK
Time taken: 0.045 seconds
3、原始表数据导入分区表(注意psn21下数据不变)
hive> from psn21
> insert overwrite table psn22 partition(age, sex)
> select id, name,likes, address,age, sex distribute by age, sex;
Query ID = root_20190215170643_7aeb9dae-62d5-49fe-ab37-022446f6a004
Total jobs =
Launching Job out of
Number of reduce tasks not specified. Estimated from input data size:
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1548397153910_0009, Tracking URL = http://PCS102:8088/proxy/application_1548397153910_0009/
Kill Command = /usr/local/hadoop-3.1./bin/mapred job -kill job_1548397153910_0009
Hadoop job information for Stage-: number of mappers: ; number of reducers:
-- ::, Stage- map = %, reduce = %
-- ::, Stage- map = %, reduce = %, Cumulative CPU 2.86 sec
-- ::, Stage- map = %, reduce = %, Cumulative CPU 6.26 sec
MapReduce Total cumulative CPU time: seconds msec
Ended Job = job_1548397153910_0009
Loading data to table default.psn22 partition (age=null, sex=null) Time taken to load dynamic partitions: 0.482 seconds
Time taken for adding to write entity : 0.001 seconds
MapReduce Jobs Launched:
Stage-Stage-: Map: Reduce: Cumulative CPU: 6.26 sec HDFS Read: HDFS Write: SUCCESS
Total MapReduce CPU Time Spent: seconds msec
OK
id name likes address age sex
Time taken: 18.572 seconds
hive>




查看该分区下数据:
[root@PCS102 ~]# hdfs dfs -cat /root/hive_remote/warehouse/psn22/age=21/sex=boy/*
5,小明5,lol-book-movie,beijing:shangxuetang-shanghai:pudong
3,小明3,lol-book-movie,beijing:shangxuetang-shanghai:pudong
[root@PCS102 ~]#
全部分区数据:
hive> select * from psn22;
OK
psn22.id psn22.name psn22.likes psn22.address psn22.age psn22.sex
小明1 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"} boy
小明2 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"} man
小明5 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"} boy
小明3 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"} boy
小明6 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"} man
小明4 ["lol","book","movie"] {"beijing":"shangxuetang","shanghai":"pudong"} man
Time taken: 0.141 seconds, Fetched: row(s)
hive>
三、分桶
1、分桶
分桶表是对列值取哈希值的方式,将不同数据放到不同文件中存储。
对于hive中每一个表、分区都可以进一步进行分桶。
由列的哈希值除以桶的个数来决定每条数据划分在哪个桶中。
适用场景:数据抽样( sampling )、map-join
2、开启支持分桶
set hive.enforce.bucketing=true;
默认:false;设置为true之后,mr运行时会根据bucket的个数自动分配reduce task个数。
(用户也可以通过mapred.reduce.tasks自己设置reduce任务个数,但分桶时不推荐使用)
注意:一次作业产生的桶(文件数量)和reduce task个数一致。
3、桶表 抽样查询
select * from bucket_table tablesample(bucket 1 out of 4 on columns);
TABLESAMPLE语法:
TABLESAMPLE(BUCKET x OUT OF y)
x:表示从哪个bucket开始抽取数据
y:必须为该表总bucket数的倍数或因子  (Y表示相隔多少个桶再次抽取)
举例:
当表总bucket数为32时
(1)TABLESAMPLE(BUCKET 2 OUT OF 4),抽取哪些数据?
数据个数:32/4=8份
桶号:2,6(2+4),10(6+4),14(10+4),18(14+4),22(18+4),26(22+4),30(26+4)
(2)TABLESAMPLE(BUCKET 3 OUT OF 8),抽取哪些数据?
数据个数:32/8=4份
桶号:3,11(3+8),19(11+8),27(19+8)
(3)TABLESAMPLE(BUCKET 3 OUT OF 256),抽取哪些数据?
数据个数:32/256=1/8份
桶号:3, 一个桶取1/8即可
4、分桶案例
原始表:
CREATE TABLE psn31
( id INT,
name STRING,
age INT)
ROW FORMAT
DELIMITED FIELDS TERMINATED BY ',';
数据/root/data2:
,tom,11
,cat,
,dog,
,hive,
,hbase,
,mr,
,alice,
,scala,
数据导入:
hive>load data local inpath '/root/data2' into table psn31;
创建分桶表
CREATE TABLE psnbucket
( id INT,
name STRING,
age INT)
CLUSTERED BY (age) INTO BUCKETS
ROW FORMAT
DELIMITED FIELDS TERMINATED BY ',';
数据分桶预测:
age%4
1,tom, --3
,cat,22 --2
,dog,33 --1
,hive,44 --0
,hbase,55 --3
,mr,66 --2
,alice,77 --1
,scala,88 --0
加载数据 执行MR任务 表目录下有四个文件(桶表不能通过load的方式直接加载数据,只能从另一张表中插入数据):
hive>insert into table psnbucket select id, name, age from psn31;

看一下每个桶文件内的数据是否和预测一样:
[root@PCS102 ~]# hdfs dfs -cat /root/hive_remote/warehouse/psnbucket/000000_0
,scala,
,hive,
[root@PCS102 ~]# hdfs dfs -cat /root/hive_remote/warehouse/psnbucket/000001_0
,alice,
,dog,
[root@PCS102 ~]# hdfs dfs -cat /root/hive_remote/warehouse/psnbucket/000002_0
,mr,
,cat,
[root@PCS102 ~]# hdfs dfs -cat /root/hive_remote/warehouse/psnbucket/000003_0
,hbase,
,tom,
数据抽样:结果跟之前版本预期不一样 很奇怪 为什么不是取00001_0里的数据?
hive> select id, name, age from psnbucket tablesample(bucket 2 out of 4 on age);
OK
id name age
mr
tom
Time taken: 0.184 seconds, Fetched: row(s)
hive>
【Hive学习之五】Hive 参数&动态分区&分桶的更多相关文章
- Hive学习之修改表、分区、列
		
Hive学习之修改表.分区.列 https://blog.csdn.net/skywalker_only/article/details/30224309 https://www.cnblogs.co ...
 - 对现有Hive的大表进行动态分区
		
分区是在处理大型事实表时常用的方法.分区的好处在于缩小查询扫描范围,从而提高速度.分区分为两种:静态分区static partition和动态分区dynamic partition.静态分区和动态分区 ...
 - Hive Experiment 2(表动态分区和IDE)
		
1.使用oracle sql developer 4.0.3作为hive query的IDE. 下载hive-jdbc driver http://www.cloudera.com/content/c ...
 - Hive学习笔记——Hive中的分桶
		
对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分.Hive也是针对某一列进行桶的组织.Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记 ...
 - hive学习(二) hive操作
		
hive ddl 操作官方手册https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL hive dml 操作官方手 ...
 - hive学习(三) hive的分区
		
1.Hive 分区partition 必须在表定义时指定对应的partition字段 a.单分区建表语句: create table day_table (id int, content string ...
 - Hive学习之五     《Hive进阶—UDF操作案例》 详解
		
hive—UDF操作 udf的操作过程: 在HIVE会话中add 自定义函数的jar文件,然后创建function,继而使用函数. 下面就以下面课题为例: 课题:统计每个活动的PV和UV 一.Java ...
 - hive学习(四) hive的函数
		
1.内置运算符 1.1关系运算符 运算符 类型 说明 A = B 所有原始类型 如果A与B相等,返回TRUE,否则返回FALSE A == B 无 失败,因为无效的语法. SQL使用”=”,不使用”= ...
 - Hive学习:Hive连接JOIN用例详解
		
1 准备数据: 1.1 t_1 01 张三 02 李四 03 王五 04 马六 05 小七 06 二狗 1.2 t_2 01 11 03 33 04 44 06 66 07 77 08 88 1.3 ...
 
随机推荐
- Java如何对List集合的操作方法(一)
			
目录: list中添加,获取,删除元素: list中是否包含某个元素: list中根据索引将元素数值改变(替换): list中查看(判断)元素的索引: 根据元素索引位置进行的判断: 利用list中索引 ...
 - 遍历出文档内所有元素的tagName
			
//深度优先 function deepLogTagNames(parentNode){ console.log(parentNode.tagName); const childNodes=paren ...
 - 用promise和async/await分别实现红绿灯
			
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
 - java 数组(二)
			
public class ArrayDemo{ public static void main(String[] args){ int[] arr = {1,5,3,8,2,9,17,13}; get ...
 - SpringBoot 使用RedisTemplate操作Redis
			
新版: import java.util.List; import java.util.Map; import java.util.Set; import java.util.concurrent.T ...
 - Servlet----------ServletConfig
			
1. 什么是 ServletConfig servletConfig对象:用于封装servlet的配置信息.从一个servlet被实例化后,对任何客户端在任何时候访问有效,但仅对servlet自身有效 ...
 - wc 统计命令
			
[root@localhost ~]# wc /etc/passwd // 统计行数.单词数.字符数 /etc/passwd [root@localhost ~]# wc -l /etc/passwd ...
 - mysql 5.7.12 新增 X plugin  x 协议 详解
			
mysql 5.7.12 新增 X plugin x 协议 详解http://xiaozhong991.blog.51cto.com/2354914/1763792 x 协议 操作nosql数据库 ...
 - MySQL5.7 多实例
			
1,先按MySQL5.7安装好后 mkdir dbdata_3307 chown mysql:mysql -R dbdata_3307 2,./bin/mysqld --initialize --u ...
 - .NET Core 指南 官方
			
https://docs.microsoft.com/zh-cn/dotnet/core/index