[bzoj4552][Tjoi2016][Heoi2016]排序
Description
给出一个$1$到$n$的全排列,现在对这个全排列序列进行$m$次局部排序,排序分为$2$种:
$1.(0,l,r)$表示将区间$[l,r]$的数字升序排序;
$2.(1,l,r)$表示将区间$[l,r]$的数字降序排序.
最后询问第$q$位置上的数字.
Input
第$1$行为两个整数$n$和$m$.$n$表示序列的长度,$m$表示局部排序的次数.
第$2$行为$n$个整数,表示$1$到$n$的一个全排列.
接下来输入$m$行,每$1$行有$3$个整数$op,l,r$.
$op$为$0$代表升序排序,$op$为$1$代表降序排序;$l,r$表示排序的区间.
最后输入一个整数$q$,$q$表示排序完之后询问的位置.
Output
输出数据仅有一行一个整数,表示按照顺序将全部的部分排序结束后第$q$位置上的数字.
Sample Input
6 3
1 6 2 5 3 4
0 1 4
1 3 6
0 2 4
3
Sample Output
5
HINT
$1\;\leq\;n,m\;\leq\;10^5,1\;\leq\;q\;\leq\;n.$
Solution
二分答案$ans$.
把$\;\leq\;ans$的位置标为$1$,其余标为$0$.
线段树维护排序操作,最后判断位置$q$上是否为$0$.
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 100005
#define M 300005
using namespace std;
struct linetree{
int l,r,t,op;
}lt[M];
struct quest{
int op,l,r;
}b[N];
int a[N],n,m,q,t,l,r,mid;
inline void build(int u,int l,int r,int k){
lt[u].l=l;lt[u].r=r;lt[u].op=0;
if(lt[u].l<lt[u].r){
int lef=u<<1,rig=u<<1|1;
int mid=(lt[u].l+lt[u].r)>>1;
build(lef,l,mid,k);build(rig,mid+1,r,k);
lt[u].t=lt[lef].t+lt[rig].t;
}
else if(a[lt[u].l]>=k) lt[u].t=0;
else lt[u].t=1;
}
inline void cover(int u,int i){
if(lt[u].l>=b[i].l&<[u].r<=b[i].r){
if(!b[i].op){
lt[u].op=-1;
if(lt[u].l-b[i].l+1<=t){
lt[u].t=min(t-(lt[u].l-b[i].l),lt[u].r-lt[u].l+1);
}
else lt[u].t=0;
}
else{
lt[u].op=1;
if(b[i].r-lt[u].r+1<=t){
lt[u].t=min(t-(b[i].r-lt[u].r),lt[u].r-lt[u].l+1);
}
else lt[u].t=0;
}
}
else if(lt[u].l<lt[u].r){
int lef=u<<1,rig=u<<1|1;
int mid=(lt[u].l+lt[u].r)>>1;
if(lt[u].op>0)/*降序*/{
lt[u].op=0;lt[lef].op=lt[rig].op=1;
lt[rig].t=min(lt[u].t,lt[rig].r-lt[rig].l+1);
lt[lef].t=lt[u].t-lt[rig].t;
}
else if(lt[u].op<0)/*升序*/{
lt[u].op=0;lt[lef].op=lt[rig].op=-1;
lt[lef].t=min(lt[u].t,lt[lef].r-lt[lef].l+1);
lt[rig].t=lt[u].t-lt[lef].t;
}
if(b[i].l<=mid) cover(lef,i);
if(b[i].r>mid) cover(rig,i);
lt[u].t=lt[lef].t+lt[rig].t;
}
}
inline int ask(int u,int l,int r){
if(lt[u].l>=l&<[u].r<=r)
return lt[u].t;
if(lt[u].l<lt[u].r){
int lef=u<<1,rig=u<<1|1,ret=0;
int mid=(lt[u].l+lt[u].r)>>1;
if(lt[u].op>0)/*降序*/{
lt[u].op=0;lt[lef].op=lt[rig].op=1;
lt[rig].t=min(lt[u].t,lt[rig].r-lt[rig].l+1);
lt[lef].t=lt[u].t-lt[rig].t;
}
else if(lt[u].op<0)/*升序*/{
lt[u].op=0;lt[lef].op=lt[rig].op=-1;
lt[lef].t=min(lt[u].t,lt[lef].r-lt[lef].l+1);
lt[rig].t=lt[u].t-lt[lef].t;
}
if(l<=mid) ret+=ask(lef,l,r);
if(r>mid) ret+=ask(rig,l,r);
return ret;
}
}
inline bool chk(int k){
build(1,1,n,k);
for(int i=1;i<=m;++i){
t=ask(1,b[i].l,b[i].r);cover(1,i);
}
return !ask(1,q,q);
}
inline void init(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)
scanf("%d",&a[i]);
for(int i=1;i<=m;++i)
scanf("%d%d%d",&b[i].op,&b[i].l,&b[i].r);
scanf("%d",&q);
l=1;r=n;
while(l<r){
mid=(l+r+1)>>1;
if(chk(mid)) l=mid;
else r=mid-1;
}
printf("%d\n",l);
}
int main(){
freopen("sort.in","r",stdin);
freopen("sort.out","w",stdout);
init();
fclose(stdin);
fclose(stdout);
return 0;
}
[bzoj4552][Tjoi2016][Heoi2016]排序的更多相关文章
- bzoj千题计划128:bzoj4552: [Tjoi2016&Heoi2016]排序
http://www.lydsy.com/JudgeOnline/problem.php?id=4552 二分答案 把>=mid 的数看做1,<mid 的数看做0 这样升序.降序排列相当于 ...
- [BZOJ4552][TJOI2016&&HEOI2016]排序(二分答案+线段树/线段树分裂与合并)
解法一:二分答案+线段树 首先我们知道,对于一个01序列排序,用线段树维护的话可以做到单次排序复杂度仅为log级别. 这道题只有一个询问,所以离线没有意义,而一个询问让我们很自然的想到二分答案.先二分 ...
- BZOJ4552 [Tjoi2016&Heoi2016]排序 【二分 + 线段树】
题目链接 BZOJ4552 题解 之前去雅礼培训做过一道题,\(O(nlogn)\)维护区间排序并能在线查询 可惜我至今不能get 但这道题有着\(O(nlog^2n)\)的离线算法 我们看到询问只有 ...
- BZOJ4552: [Tjoi2016&Heoi2016]排序
Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题 ,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这 ...
- [bzoj4552][Tjoi2016&Heoi2016]排序-二分+线段树
Brief Description DZY有一个数列a[1..n],它是1∼n这n个正整数的一个排列. 现在他想支持两种操作: 0, l, r: 将a[l..r]原地升序排序. 1, l, r: 将a ...
- BZOJ4552:[TJOI2016&HEOI2016]排序(线段树,二分)
Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他. 这个难题是这样子的:给出一个1到n的全排列,现在对这 ...
- 2018.08.01 BZOJ4552: [Tjoi2016&Heoi2016]排序(二分+线段树)
传送门 线段树简单题. 二分答案+线段树排序. 实际上就是二分答案mid" role="presentation" style="position: relat ...
- BZOJ4552 Tjoi2016&Heoi2016排序 【二分+线段树】*
Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这个 ...
- [BZOJ4552][Tjoi2016&Heoi2016]排序(二分答案+线段树)
二分答案mid,将>=mid的设为1,<mid的设为0,这样排序就变成了区间修改的操作,维护一下区间和即可 然后询问第q个位置的值,为1说明>=mid,以上 时间复杂度O(nlog2 ...
随机推荐
- (原创)mybaits学习三,springMVC和mybatis融合
上一节,总计了spring和mybaits的融合,这一节,我们来学习springmvc和mybatis融合 最近在弄一个SSM的项目,然后在网上找资料,将资料总结如下 一,开发环境的配置 MyEcli ...
- hessian学习
hessian是一个采用二进制格式传输的服务框架,相对传统soap web service,更轻量,更快速.官网地址:http://hessian.caucho.com/ 目前已经支持N多语言,包括: ...
- Logging的这点小事
真正做项目,才发觉Logging的好处和学问.自己胡搞的时候,常常使用System.out.println作为输出. 但实际的项目,尤其是library比较多的时候,好好配置好Logging,才能在后 ...
- Python2.4-原理之函数
此节来自于<Python学习手册第四版>第四部分 一.函数基础 函数的作用在每个编程语言中都是大同小异的,,这个表是函数的相关语句和表达式. 1.编写函数,a.def是可执行代码,pyth ...
- 如何在 ie6 中使用 "localStorage"
好吧,我只是个标题党,ie6 下根本无法使用跟 h5 沾边的 localStorage.今天要向大家介绍的是 ie 特有的 userData 的存储方式,并且对它进行封装,使得不支持 localSto ...
- 特殊约束From To
说实话这个不太懂,没用过也没有遇到相应的情况(或者说我不知道).大家可以更多的去参考特定约束FROM TO和MicroZed开发板笔记,第72部分:多周期约束等内容. 本文待修正 系列目录 ...
- echarts .NET类库开源
前言: 2012年从长沙跑到深圳,2016年又从深圳回到长沙,兜兜转转一圈,又回到了原点.4年在深圳就呆了一家公司,回长沙也是因为深圳公司无力为继,长沙股东老板挽留,想想自己年纪也不小了.就回来了,在 ...
- 千呼万唤岂出来,写款软件不容易——Visual Entity 2.0 发布
在各位用户不继的催更中,终于完成了这次更新.Visual Entity这个软件发布于 2011年,这个软件完成后,便上班去了,也没有做什么推广工作.所以知道的用户并不多,尽管它是个非常好用.并且免费的 ...
- Excel——将内容导入
1.写入Excel文件的操作引入Microsoft.Office.Tools.Excel.dll 程序集 List<Person> list = new List<Person> ...
- setTimeout和setinterval的区别
setTimeout("alert('久等了')",2000)是等待多长时间开始执行函数 setinterval(fn,1000)是每隔多长时间执行一次函数 setTimeout和 ...