Given an unsorted array of integers, find the length of longest increasing subsequence.

For example,
Given [10, 9, 2, 5, 3, 7, 101, 18],
The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

Your algorithm should run in O(n2) complexity.

Follow up: Could you improve it to O(n log n) time complexity?

用DP的方法,每一个dp[i]代表从nums[0]到这个元素nums[i]的最长的inreasing subsequence的长度。O(N^2)的解法:

 class Solution(object):
def lengthOfLIS(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums:
return 0
n = len(nums)
dp = [1] * n for i in range(0, n):
for j in range(i+1, n):
if nums[j] > nums[i]:
dp[j] = max(dp[i] + 1, dp[j]) return max(dp)

解法二 O(N logN)

本题可以用一个dp list来维护LIS的solution。对于nums里面的数跑一个for loop。如果遇到dp = [],需要把当前的num填到dp list里面。如果发现num大于dp list的最后(也就是最大的那个数)就append上去。如果num在[dp[0], dp[-1]]区间内,用binary search找到num应该在的位置去替换相应的数。这么做的目的是,例如上图中用5替换了7,假如5后面有6,7两个数的话,就会取得一个更长的subsequence。注意mid和num比较时使用的是>还是>=。这回区间头是移动到mid+1还是mid。

 def lengthOfLIS(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums:
return 0
size = len(nums)
dp = []
for x in range(size):
if not dp or dp[-1] < nums[x]:
dp.append(nums[x])
low, high = 0, len(dp) - 1
while low < high:
mid = (low + high)/2
if dp[mid] < nums[x]:
low = mid + 1
else:
high = mid
dp[high] = nums[x] return len(dp)

Leetcode 300 Longest Increasing Subsequence的更多相关文章

  1. [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  2. leetcode@ [300] Longest Increasing Subsequence (记忆化搜索)

    https://leetcode.com/problems/longest-increasing-subsequence/ Given an unsorted array of integers, f ...

  3. [leetcode]300. Longest Increasing Subsequence最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  4. [leetcode] 300. Longest Increasing Subsequence (Medium)

    题意: 求最长增长的子序列的长度. 思路: 利用DP存取以i作为最大点的子序列长度. Runtime: 20 ms, faster than 35.21% of C++ online submissi ...

  5. LeetCode 300. Longest Increasing Subsequence最长上升子序列 (C++/Java)

    题目: Given an unsorted array of integers, find the length of longest increasing subsequence. Example: ...

  6. LeetCode——300. Longest Increasing Subsequence

    一.题目链接:https://leetcode.com/problems/longest-increasing-subsequence/ 二.题目大意: 给定一个没有排序的数组,要求从该数组中找到一个 ...

  7. 【LeetCode】300. Longest Increasing Subsequence 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  8. 【leetcode】300.Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  9. 【刷题-LeetCode】300. Longest Increasing Subsequence

    Longest Increasing Subsequence Given an unsorted array of integers, find the length of longest incre ...

随机推荐

  1. Mysql的二进制日志binlog的模式说明

    binlog模式总共可分为以下三种:row,statement,mixed 1.Row日志中会记录成每一行数据被修改的形式,然后在slave端再对相同的数据进行修改,只记录要修改的数据,只有value ...

  2. Standard Error of Mean(s.e.m.)

    · 来源:http://www.dxy.cn/bbs/thread/6492633#6492633 6楼: “据我所知,SD( standard deviation )反应的是观测值的变异性,其表示平 ...

  3. XMLHTTPRequest/Ajax请求 和普通请求的区别

    Ajax请求头会多一个x-requested-with参数,值为XMLHttpRequest 详情:http://blog.csdn.net/zhangdaiscott/article/details ...

  4. MYSQL查询优化

    目前手头有个查询: SELECT LPP.learning_project_pupilID, SL.serviceID, MAX(LPPO.start_date), SUM(LPPOT.license ...

  5. string to char* and char* to string 玩转 String 和 Char*

    char 类型是c语言中常见的一个数据类型,string是c++中的一个,它的定义为 Strings are objects that represent sequences of character ...

  6. <实训|第十二天>用LVM对linux分区进行动态扩容

    [root@localhost~]#序言在linux中,我们安装软件的途径一般有那些,你们知道吗?在linux中,如果你的磁盘空间不够用了,你知道如何来扩展磁盘吗?动态扩容不仅在工作中还是在其他方面都 ...

  7. .Net相关

    Lucene 全文搜索 http://lucenenet.apache.org/ Memcached 分布式缓存 http://memcached.org/ selenium UI自动化测试 http ...

  8. nios II--实验5——定时器软件部分

    软件开发 首先,在硬件工程文件夹里面新建一个software的文件夹用于放置软件部分:打开toolsàNios II 11.0 Software Build Tools for Eclipse,需要进 ...

  9. MPLS基础

    1.1  MPLS简介 MPLS(Multiprotocol Label Switching,多协议标签交换)是一种新兴的IP骨干网技术.MPLS在无连接的IP网络上引入面向连接的标签交换概念,将第三 ...

  10. 【JQuery】 ajax 无效的JSON基元

    [如题]个人理解就是 你向传数据[josn格式]了,但是后台接受确不是json格式的 数据, 贴段代码 var strJson = '{ "usercode": "123 ...