n = 100
g = 6
set.seed(g)
d <- data.frame(x = unlist(lapply(1:g, function(i) rnorm(n/g, runif(1)*i^2))),
                y = unlist(lapply(1:g, function(i) rnorm(n/g, runif(1)*i^2))))
plot(d)
###################
d = read.table('clipboard',header = T)
plot(d)

mydata <- d
wss <- (nrow(mydata)-1)*sum(apply(mydata,2,var))
for (i in 2:15) wss[i] <- sum(kmeans(mydata,
                                     centers=i)$withinss)
plot(1:15, wss, type="b", xlab="Number of Clusters",
     ylab="Within groups sum of squares")

library(fpc)
pamk.best <- pamk(d)
##############################
lastcluster = pam(d, 1) # pam(d, pamk.best$nc)
plot(d,type='l')
vl = c(lastcluster$medoids[,1])
vl
abline(v=vl,lty=2,col='red')

#library(cluster)
#plot(pam(d, 3))
###################################
#cat("number of clusters estimated by
#    optimum average silhouette width:", pamk.best$nc, "\n")
#library(cluster)
#plot(pam(d, pamk.best$nc))

k-mean 拐点的更多相关文章

  1. Standford机器学习 聚类算法(clustering)和非监督学习(unsupervised Learning)

    聚类算法是一类非监督学习算法,在有监督学习中,学习的目标是要在两类样本中找出他们的分界,训练数据是给定标签的,要么属于正类要么属于负类.而非监督学习,它的目的是在一个没有标签的数据集中找出这个数据集的 ...

  2. django模型操作

    Django-Model操作数据库(增删改查.连表结构) 一.数据库操作 1.创建model表        

  3. BZOJ2171——K凹凸序列

    好吧,我承认是sb题QAQ BZOJ2171弱化版QAQ 这题考试的时候写的我快吐血了QAQ 0.题目大意:给一个序列,你可以随便修改,修改是将一个数+1或-1,一次修改的代价是1,问把这个数修改成x ...

  4. kmeans算法原理以及实践操作(多种k值确定以及如何选取初始点方法)

    kmeans一般在数据分析前期使用,选取适当的k,将数据聚类后,然后研究不同聚类下数据的特点. 算法原理: (1) 随机选取k个中心点: (2) 在第j次迭代中,对于每个样本点,选取最近的中心点,归为 ...

  5. NOIP2013 提高组day2 2 花匠 动规 找拐点 树状数组

    花匠 描述 花匠栋栋种了一排花,每株花都有自己的高度.花儿越长越大,也越来越挤.栋栋决定把这排中的一部分花移走,将剩下的留在原地,使得剩下的花能有空间长大,同时,栋栋希望剩下的花排列得比较别致. 具体 ...

  6. 【机器学习】K均值算法(II)

    k聚类算法中如何选择初始化聚类中心所在的位置. 在选择聚类中心时候,如果选择初始化位置不合适,可能不能得出我们想要的局部最优解. 而是会出现一下情况: 为了解决这个问题,我们通常的做法是: 我们选取K ...

  7. MT【293】拐点处切线

    (2018浙江高考压轴题)已知函数$f(x)=\sqrt{x}-\ln x.$(2)若$a\le 3-4\ln 2,$证明:对于任意$k>0$,直线$y=kx+a$ 与曲线$y=f(x)$有唯一 ...

  8. K-means中的K值选择

    关于如何选择Kmeans等聚类算法中的聚类中心个数,主要有以下方法(译自维基): 1. 最简单的方法:K≍sqrt(N/2) 2. 拐点法:把聚类结果的F-test值(类间Variance和全局Var ...

  9. 异动K线--庄家破绽

    <异动K线--庄家破绽(连载)> http://bbs.tianya.cn/post-stocks-612892-1.shtml ————马后炮分析,没有什么前瞻性.纯技术是害死许多钻牛角 ...

  10. 使用肘部法确定k-means均值的k值

    import numpy as np from sklearn.cluster import KMeans from scipy.spatial.distance import cdist impor ...

随机推荐

  1. python全栈开发 * 35 知识点汇总 * 180720

    35 socket 一些常用方法 验证客户端信息 添加随机字符串 socketserver模块 一.socket模块中一些常用方法1.send和sendall的区别2.conn.getpeername ...

  2. java8新特性--Stream的基本介绍和使用

    什么是Stream? Stream是一个来自数据源的元素队列并可以进行聚合操作. 数据源:流的来源. 可以是集合,数组,I/O channel, 产生器generator 等 聚合操作:类似SQL语句 ...

  3. mysql导入数据时报错

     问题 导入数据时有时会因为数据字段大的问题导入失败. mysql根据配置文件会限制server接受的数据包大小. 有时候大的插入和更新会被max_allowed_packet 参数限制掉,导致失败. ...

  4. Monte Carlo simulated annealing

    蒙特·卡罗分子模拟计算 使用蒙特·卡罗方法进行分子模拟计算是按照以下步骤进行的: 1. 使用随机数发生器产生一个随机的分子构型. 2. 对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型. ...

  5. phpstudy如何安装ssl证书

    网站上面部署ssl证书的站点越来越大,但有很多集成式的web服务器无法按照一般站点的配置来部署ssl证书,现在,卓趣科技就以集成式phpstudy为例(apache+mysql),为大家展示一下正确的 ...

  6. 025-缓存Cache

    如果每次进入页面的时候都查询数据库生成页面内容的话,如果访问量非常大,则网站性能会非常差.而如果只有第一次访问的时候才查询数据库生成页面内容,以后都直接输出内容,则能提高系统性能.这样无论有多少人访问 ...

  7. CentOS 7 使用SVN+Apache搭建版本控制服务器

    svn简介 Subversion是一个免费/开源的版本控制系统, Subversion 可以跨越时间地对文件和目录, 以及它们的修改进行管理. 这就允许你恢复 数据的旧版本, 或检查数据的修改历史. ...

  8. BIOS备忘录之IIC(touchpad)设备

    简述BIOS中对IIC device的支持,以touchpad为例. 信息收集 收集平台的硬件信息: 1. IIC controller number(PCH一般包含多个controller,我们使用 ...

  9. 1、Kafka介绍

    1.Kafka介绍 1)在流式计算中,Kafka一般用来缓存数据,Storm通过消费Kafka的数据进行计算. 2)Kafka是一个分布式消息队列. 3)Kafka对消息保存时根据Topic进行归类, ...

  10. keepalived + nginx 搭建负载均衡集群

    第一章 keepalived 1.1 keepalived 服务说明 Keepalived软件起初是专为LVS负载均衡软件设计的,用来管理并监控LVS集群系统中各个服务节点的状态,后来又加入了可以实现 ...